Over the past 2 decades, biologists have come to appreciate that hybridization, or genetic exchange between distinct lineages, is remarkably common-not just in particular lineages but in taxonomic groups across the tree of life. As a result, the genomes of many modern species harbor regions inherited from related species. This observation has raised fundamental questions about the degree to which the genomic outcomes of hybridization are repeatable and the degree to which natural selection drives such repeatability. However, a lack of appropriate systems to answer these questions has limited empirical progress in this area. Here, we leverage independently formed hybrid populations between the swordtail fish Xiphophorus birchmanni and X. cortezi to address this fundamental question. We find that local ancestry in one hybrid population is remarkably predictive of local ancestry in another, demographically independent hybrid population. Applying newly developed methods, we can attribute much of this repeatability to strong selection in the earliest generations after initial hybridization. We complement these analyses with time-series data that demonstrates that ancestry at regions under selection has remained stable over the past approximately 40 generations of evolution. Finally, we compare our results to the well-studied X. birchmanni × X. malinche hybrid populations and conclude that deeper evolutionary divergence has resulted in stronger selection and higher repeatability in patterns of local ancestry in hybrids between X. birchmanni and X. cortezi.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379403 | PMC |
http://dx.doi.org/10.1371/journal.pbio.3002742 | DOI Listing |
Biology (Basel)
December 2024
Hunan Institute of Animal and Veterinary Science, Changsha 410131, China.
Exploring the genetic landscape of native cattle is an exciting avenue for elucidating nuanced patterns of genetic variation and adaptive dynamics. Xiangnan cattle, a native Chinese cattle breed mainly produced in Hunan Province, are well adapted to the high temperature and humidity of the local environment and exhibit strong disease resistance. Herein, we employed whole-genome sequences of 16 Xiangnan cattle complemented by published genome data from 81 cattle.
View Article and Find Full Text PDFStructural variants (SVs) drive gene expression in the human brain and are causative of many neurological conditions. However, most existing genetic studies have been based on short-read sequencing methods, which capture fewer than half of the SVs present in any one individual. Long-read sequencing (LRS) enhances our ability to detect disease-associated and functionally relevant structural variants (SVs); however, its application in large-scale genomic studies has been limited by challenges in sample preparation and high costs.
View Article and Find Full Text PDFPolygenic risk scores (PRSs) depend on genetic ancestry due to differences in allele frequencies between ancestral populations. This leads to implementation challenges in diverse populations. We propose a framework to calibrate PRS based on ancestral makeup.
View Article and Find Full Text PDFBMC Immunol
January 2025
Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France.
Introduction: We have reanalyzed the genomic data from the International Collaboration for the Genomics of HIV (ICGH), focusing on HIV-1 Elite Controllers (EC).
Methods: A genome-wide association study (GWAS) was performed, comparing 543 HIV-1 EC individuals with 3,272 uninfected controls (CTR) of European ancestry. 8 million single nucleotide polymorphisms (SNPs) and HLA class I and class II gene alleles were imputed to compare EC and CTR.
Am J Hum Genet
December 2024
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA. Electronic address:
In recent years, significant efforts have been made to improve methods for genomic studies of admixed populations using local ancestry inference (LAI). Accurate LAI is crucial to ensure that downstream analyses accurately reflect the genetic ancestry of research participants. Here, we test analytic strategies for LAI to provide guidelines for optimal accuracy, focusing on admixed populations reflective of Latin America's primary continental ancestries-African (AFR), Amerindigenous (AMR), and European (EUR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!