Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To evaluate color change in ceramic veneers luted to enamel with light-cured, dual-cured resin luting agents, or heated resin composites, as well as to evaluate microhardness and diametral tensile strength of these luting agents.
Methods: For color analysis, 0.5 mm-thick leucite-reinforced glass ceramic veneers (IPS Empress CAD) were cemented onto 40 bovine dental blocks (n= 10) using RelyX Ultimate (RU) or RelyX Veneer (RV) resin-based luting agents, or Gradia Direct (GD) and Palfique Lx5 (P) heated resin composites. After luting, the specimens were subjected to thermocycling (10,000 cycles). Color analysis was performed before and after thermocycling (L*, a*, b*, ΔEab, ΔE₀₀). For the microhardness (Knoop) and diametral tensile strength tests, specimens (Ø 6 x 2 mm) were made (RU, RV, GD, and P). The specimens were subdivided into eight groups (n=10) and light-cured through different ceramic sheets (thicknesses of 0.5 mm or 1.5 mm). Knoop microhardness was performed on the top surface in a microhardness tester, and diametral tensile strength on a universal testing machine. Data were submitted to statistical analysis, using two-way ANOVA, Tukey, and Kruskal-Wallis tests (α= 0.05).
Results: For the general color alteration, there was no statistically significant difference between the luting materials (ΔEab, P= 0.57; ΔE₀₀, P= 0.50). There was no interaction between luting agent and thermocycling, for L* (P= 0.87), a* (P= 0.97) and b* (P= 0.95) values. Thermocycling significantly affected only the L* values (P= 0.047), which increased after the cycles. For microhardness, there was a statistically significant difference considering luting agents and ceramic thickness (P< 0.001). GD heated resin composite presented significantly lower microhardness values than all other materials, at both ceramic thicknesses. At a thickness of 1.5 mm, RU cement had higher microhardness values than RV and P materials. Diametral tensile strength was significantly influenced by luting agent (P= 0.01), but not by ceramic thickness (P= 0.55). Diametral tensile strength of GD resin composite was higher than that of the RU, but neither of these two materials differed from RV and P.
Clinical Significance: Heated resin composite, used as luting agents, showed similar color stability to light-cured and dual-cure resin cements, however its microhardness was affected by ceramic thickness.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!