Prolamin-based particles loaded with bioactive molecules have attracted widespread attention from scientists due to their novel properties in chemistry, physics, and biology. In the self-assembly process of biopolymer-based nanocapsules, noncovalent interactions are the main driving forces for reducing bulk materials to the nanoscale and controlling the release of bioactive molecules. This article reviews the types of interaction forces, binding strength, binding active sites, molecular orientation, and binding affinity that affect the release profile of bioactive molecules during the preparation of protein stabilizer particles. Different preparation formulations, the use of different biopolymers, the inherent nature of the loaded bioactive molecules, and external factors (including pH, biopolymer concentration, temperature, salt, ultrasonication, and atmospheric cold plasma treatment) lead to different types and strengths of intra- and intermolecular interactions. Strategies, such as pH, ultrasonication, and atmospheric cold plasma, to change the protein conformation are key to improving the binding strength between proteins and bioactive substances or stabilizers. This review provides some guidance for scientists and technicians dedicated to improving loading efficiency, delaying release, enhancing colloidal stability, and exploring the binding behavior among proteins, stabilizers, and bioactive molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.4c04372 | DOI Listing |
Transl Neurodegener
January 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) are diverse in clinical presentation and are caused by complex and multiple factors, including genetic mutations and environmental factors. Numerous therapeutic approaches have been developed based on the genetic causes and potential mechanisms of ALS and HD. Currently, available treatments for various neurodegenerative diseases can alleviate symptoms but do not provide a definitive cure.
View Article and Find Full Text PDFMol Divers
January 2025
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, Liaoning, China.
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases. Given the multifactorial pathophysiology of AD, monotargeted agents can only alleviate symptoms but not cure AD. Acetylcholinesterase (AChE) and Monoamine oxidase B (MAO-B) are two key targets in the treatment of AD, molecules that inhibiting both targets are considered promising avenue to develop more effective AD therapies.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China. Electronic address:
Neurovascular flow-diverting stents (FDSs) are revolutionizing the paradigm for treatment of intracranial aneurysms, but they still face great challenges like post- implantation acute thrombosis and delayed reendothelialization. Surface modification is of crucial relevance in addressing such key issues. In this study, we fabricated an ultrathin nanocoating out of copper (II) together with protocatechuic acid (PCA) and nattokinase (NK) bioactive molecules on NiTi FDSs via a coordination chemistry approach, with favorable biophysiochemical interactions, to fulfill this goal.
View Article and Find Full Text PDFBiomacromolecules
January 2025
School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Chitosan is a versatile bioactive polysaccharide in various industries, such as pharmaceuticals and environmental applications, owing to its abundance, biodegradability, biocompatibility, and antibacterial properties. To effectively harness its potential for various purposes, it is crucial to understand the mechanisms of its interaction in water. This study investigates the interactions between high molecular weight (HMW, >150 kDa) chitosan and four different functionalized self-assembled monolayers (SAMs) at three different pHs (3.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.
The innate immune system is tightly regulated by a complex network of chemical signals triggered by pathogens, cellular damage, and environmental stimuli. While it is well-established that changes in the extracellular environment can significantly influence the immune response to pathogens and damage-associated molecules, there remains a limited understanding of how changes in environmental stimuli specifically impact the activation of the NLRP3 inflammasome, a key component of innate immunity. Here, we demonstrated how shear stress can act as Signal 2 in the NLRP3 inflammasome activation pathway by treating LPS-primed immortalized bone marrow-derived macrophages (iBMDMs) with several physiologically relevant magnitudes of shear stress to induce inflammasome activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!