A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

FDGNet: Frequency Disentanglement and Data Geometry for Domain Generalization in Cross-Scene Hyperspectral Image Classification. | LitMetric

Cross-scene hyperspectral image classification (HSIC) poses a significant challenge in recognizing hyperspectral images (HSIs) from different domains. The current mainstream approaches based on domain adaptation (DA) methods need to access target data when aligning distributions between domains, limiting the applicability of the model. In contrast, recent domain generalization (DG) methods aim to directly generalize to unseen domains, eliminating the requirements for target data during training. Nonetheless, most DG-based methods overly focus on randomizing sample styles, leading to semantically compromised samples. In addition, broadening the source distribution without ensuring reasonable support may result in undesired extended distributions. To address these issues, we propose a novel DG network with frequency disentanglement and data geometry (FDGNet) for cross-scene HSIC. Specifically, we first develop a spectral-spatial encoder based on frequency disentanglement (FDSS encoder), which facilitates synthesized domains to preserve their semantic consistency while simulating interdomain gaps with the source domain. Second, to avoid the generation of unrealistic samples, we incorporate data geometry into adversarial training. This helps diversify new domains while keeping the data geometry of extended domains in an explainable support. To improve the learning of domain-invariant representation, we propose an intermediate domain sampling strategy based on the class-wise perceptual manifold. This strategy synthesizes reliable intermediate domains by sampling from class-wise manifold flows estimated over the source and extended domains. Extensive experiments and analysis on three public HSI datasets yield the superiority of our proposed FDGNet. The codes will be available from the website: https://github.com/Qba-heu/FDGNet.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2024.3445136DOI Listing

Publication Analysis

Top Keywords

data geometry
16
frequency disentanglement
12
disentanglement data
8
domain generalization
8
cross-scene hyperspectral
8
hyperspectral image
8
image classification
8
domains
8
target data
8
extended domains
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!