Purpose: To evaluate the relationship between kinetic parameters of ultrafast dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and tumor-infiltrating lymphocytes (TILs) in breast cancer.
Patients And Methods: This retrospective study was approved by an institutional review board and included 76 women (median age: 60) with 76 surgically proven breast cancers who underwent DCE MRI including ultrafast sequence. Based on the TILs level, we classified the patients into the low-TILs (< 10%) group and the high-TILs (≥ 10%) group. Maximum slope (MS) and time to enhancement (TTE) derived from ultrafast DCE sequence were correlated in each TILs group. The percentages of six kinetic patterns (fast, medium, and slow from the early phase, washout, plateau, and persistent from the delayed phase) derived from the conventional DCE sequence were also correlated in each TILs group.
Results: Of the 76 breast cancers, 57 were in the low-TILs group and 19 comprised the high-TILs group. The median MS in the high-TILs group (32.4%/sec) was significantly higher than that in the low-TILs group (23.68%/s) (p = 0.037). In a receiver-operating characteristic (ROC) analysis, the area under the curve (AUC) for differentiating between the high- and low-TILs group was 0.661. The TTE in the high-TILs group was significantly shorter than that in the low-TILs group (p = 0.012). In the ROC analysis, the AUC was 0.685. There were no significant differences between the percentages of the six kinetic patterns from the conventional DCE sequence and the TILs level (p = 0.075-0.876).
Conclusion: Compared to the low-TILs group, the high-TILs group had higher MS and shorter TTE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11604-024-01645-w | DOI Listing |
Org Biomol Chem
January 2025
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
The "catalytic triad" present at the active site of ribonuclease A (RNase A) is responsible for the cleavage of the 5'-phosphodiester bond; amino acid residues His12, Lys41 and His119 constituting this triad provide a positively charged environment at the physiological pH. Based on docking studies, 1,4,5-trisubstituted-carboxylated 1,2,3-triazoles (1,4,5-TTs) were identified as a new class of RNase A inhibitors. Therefore, two different groups of 1,4,5-TTs, functionalized with carboxylic acid groups, were synthesized by reacting pre functionalized butyne-1,4-diol derivatives with several aryl/alkyl azides under solvent and catalyst free conditions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Oxford, Chemistry, 12 Mansfield Road, OX1 3TA, Oxford, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
In homogeneous catalysis, uncovering structure-activity relationships remains very rare but invaluable to understand and rationally improve performances. Here, generalizable structure-activity relationships apply to a series of heterodinuclear polymerization catalysts featuring Co(III) and s-block metals M(I/II) (M= Na(I), K(I), Ca(II), Sr(II), Ba(II)). These are shown to apply to polycarbonate production by the ring-opening copolymerizations (ROCOP) of cyclohexene oxide (CHO) and carbon dioxide (CO2), conducted at high (20 bar) and low (1 bar) CO2 pressures, and to polyester production by copolymerization of cyclohexene oxide and phthalic anhydride (PA).
View Article and Find Full Text PDFFront Immunol
December 2024
Median Technologies, Imaging Lab, Valbonne, France.
Objective: Assess the contribution of early tumor growth dynamics modeling to predict clinical outcomes in non-small cell lung cancer patients receiving immunotherapy, alongside standard RECIST 1.1 criteria.
Methods: Our retrospective studies used data from 861 patients with advanced NSCLC enrolled in three randomized Phase III trials evaluating immunotherapy plus chemotherapy were analyzed.
Heliyon
December 2024
Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
A magnetic nano-composite coagulant has been designed, originally applied in a specific industrial waste-water treatment, and statistically investigated using Central Composite Design (CCD). The generated polynomial models were utilized to achieve a comprehensive understanding of the impact of each ingredient of PolyAluminum Chloride (PAC), PolyAcrylAmide (PAM), and Iron (III) oxide magnetic nano particles (MNP) regarding optimum limits and conditions. The concentration of each of those components has been considered as the main effective factors, which are found to be significantly correlated, affecting the Total Dissolved Solid (TDS) removal (%), the Total Suspended Solid (TSS) removal (%), and the Turbidity Reduction Rate (TRR) NTU/min.
View Article and Find Full Text PDFHeliyon
December 2024
School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
This paper presents the preparation of the parental experimental alloy, featuring a standard composition of TiYZrFeNiMn, via the vacuum induction melting technique. Subsequently, the TiYZrFeNiMn alloy, with an addition of 2 wt% Ni, underwent mechanical ball milling to yield a TiFe-based composite for experimental purposes. The results of the experimental tests indicate that the composite alloy's phase composition comprises the TiFe primary phase, with a minor quantity of ZrMn phase segregated on the surface of the primary TiFe phase, as well as Ni phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!