Tumor acidity-driven nanomotors may offer robust propulsion for tumor-specific penetrating drug delivery. Herein, an acidity-actuated poly(amino acid) calcium phosphate (CaP) hybrid nanomotor (PCaPmotor) was designed, using a mPEG-PAsp-PPhe@THZ531 micelle (Poly@THZ) for CaP mineralization accompanied by αPD-L1 antibody encapsulation. Dissolution of the CaP layer in an acidic tumor environment gave off heat energy to propel the nanomotor to augment the cellular uptake and penetration into deeply seated cancer cells while facilitating αPD-L1 release. THZ531 delivered by the PCaPmotor inhibited CDK12 and its down-streamed phosphorylation of RNAP-II to increase the cancer immunogenicity events such as the DNA damage, cell apoptosis, immunogenic cell death, lysosomal function disturbance, and MHC-I upregulation. THZ531 and αPD-L1 cosupplied by PCaPmotor significantly increased the frequency of DCs maturation and intratumoral infiltration of CTLs, but the two free drugs did not. Consequently, the PCaP@THZ/αPD-L1 nanomotor resulted in synergistic anticancer immunotherapy in mice. This acid-actuated PCaPmotor represented a new paradigm for penetrating drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c01610 | DOI Listing |
Nat Prod Res
January 2025
Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
The chloroform extract of leaves of L, reduced the levels of lipid profile in rats with hypercholesterolaemia to near-normal levels. Additionally, it significantly decreased the amount of malondialdehyde (MDA). In addition, the extract augmented the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) in the hypercholesterolemic treated rats.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.
Functionalization of polymer nanoparticles (NPs) with targeting peptides is of interest for drug delivery applications to enhance tumor accumulation and penetration. Herein, we evaluated the feasibility of two different methods for the attachment of a tumor-penetrating peptide LinTT1 (AKRGARSTA) to poly(ethylene glycol)-block-poly(ε-caprolactone) (PCL-PEG) NPs: (1) "post-conjugation" onto pre-formed nanoparticles, and (2) "pre-conjugation", the synthesis and purification of peptide-polymer conjugates and subsequent nanoprecipitation of the conjugates diluted with non-functionalized polymers. Conjugation of the labelled peptide via maleimide-thiol chemistry was verified by gel permeation chromatography (GPC) and fluorescence measurements.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
Pranveer Singh Institute of Technology, Pharmacy, Kanpur, India.
Carbon nanotubes (CNTs) has emerged as a promising nanomaterial with a wide range of potential applications due to their unique structural, mechanical, electrical, and thermal properties. However, numerous obstacles must be overcome for CNTs to be used successfully, including low solubility, aggregation, and a lack of specialized functions. Diverse techniques have been developed for the manufacture, purification, and functionalization of CNTs in order to overcome these issues.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
The rapid development of delivery systems for cosmetics has revealed two critical challenges in the field: enhancing the solubility of active ingredients and ensuring the stability of natural materials used in cosmetics. Nanoemulsion technology has emerged as an indispensable solution for addressing these challenges, not only enhancing the stability of cosmetics but also improving the solubility of pharmaceuticals and active ingredients with poor solubility. Nanoemulsion formulations have reinforced stability and amended the bioavailability of hydrophobic drugs.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Pittsburgh, Pittsburgh, PA, USA.
Background: The bi-directional autophagy and inflammation network becomes progressively dysregulated with age, with systemic inflammation as a biomarker of this dysregulation including in Alzheimer's Disease (AD). We hypothesize that interventions which target the shared feature of systemic inflammation in the biology of aging and AD, via regulation of the autophagy-inflammation network, will prevent the conversion to disease pathogenesis in AD as well as improve healthspan and longevity in aging populations. While previous studies report benefits of mTOR inhibition including rapamycin in transgenic mouse models of familial AD, the present studies aim to evaluate this pathway in a model of sporadic, late onset AD (LOAD) and test the contribution of AMP-activated protein kinase (AMPK) as a critical regulator of the mTOR pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!