Diving into Sweat: Advances, Challenges, and Future Directions in Wearable Sweat Sensing.

ACS Nano

Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

Published: September 2024

Sweat analysis has advanced from diagnosing cystic fibrosis and testing for illicit drugs to noninvasive monitoring of health biomarkers. This article introduces the rapid development of wearable and flexible sweat sensors, highlighting key milestones and various sensing strategies for real-time monitoring of analytes. We discuss challenges such as developing high-performance nanomaterial-based biosensors, ensuring continuous sweat production and sampling, achieving high sweat/blood correlation, and biocompatibility. The potential of machine learning to enhance these sensors for personalized healthcare is presented, enabling real-time tracking and prediction of physiological changes and disease onset. Leveraging advancements in flexible electronics, nanomaterials, biosensing, and data analytics, wearable sweat biosensors promise to revolutionize disease management, prevention, and prediction, promoting healthier lifestyles and transforming medical practices globally.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c10344DOI Listing

Publication Analysis

Top Keywords

wearable sweat
8
sweat
5
diving sweat
4
sweat advances
4
advances challenges
4
challenges future
4
future directions
4
directions wearable
4
sweat sensing
4
sensing sweat
4

Similar Publications

Portable sensor technologies are indispensable in personalized healthcare and environmental monitoring as they enable the continuous tracking of key analytes. Human sweat contains valuable physiological information, and previously developed noninvasive sweat-based sensors have effectively monitored single or multiple biomarkers. By successfully detecting biochemicals in sweat, portable sensors could also significantly broaden their application scope, encompassing non-biological fluids commonly encountered in daily life, such as mineral water.

View Article and Find Full Text PDF

A Highly Stable Electrochemical Sensor Based on a Metal-Organic Framework/Reduced Graphene Oxide Composite for Monitoring the Ammonium in Sweat.

Biosensors (Basel)

December 2024

Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China.

The demand for non-invasive, real-time health monitoring has driven advancements in wearable sensors for tracking biomarkers in sweat. Ammonium ions (NH) in sweat serve as indicators of metabolic function, muscle fatigue, and kidney health. Although current ion-selective all-solid-state printed sensors based on nanocomposites typically exhibit good sensitivity (~50 mV/log [NH]), low detection limits (LOD ranging from 10 to 10 M), and wide linearity ranges (from 10 to 10 M), few have reported the stability test results necessary for their integration into commercial products for future practical applications.

View Article and Find Full Text PDF

Detecting Hypoxia Through the Non-Invasive and Simultaneous Monitoring of Sweat Lactate and Tissue Oxygenation.

Biosensors (Basel)

November 2024

Department of Chemistry, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.

Hypoxia, characterized by inadequate tissue oxygenation, may result in tissue damage and organ failure if not addressed. Current detection approaches frequently prove insufficient, depending on symptoms and rudimentary metrics such as tissue oxygenation, which fail to comprehensively identify the onset of hypoxia. The European Pressure Ulcer Advisory Panel (EPUAP) has recognized sweat lactate as a possible marker for the early identification of decubitus ulcers, nevertheless, neither sweat lactate nor oxygenation independently provides an appropriate diagnosis of hypoxia.

View Article and Find Full Text PDF

Wearable technology has advanced significantly, offering real-time monitoring of athletes' physiological parameters and optimizing training and recovery strategies. Recent developments focus on biosensor devices capable of monitoring biochemical parameters in addition to physiological ones. These devices employ noninvasive methods such as sweat analysis, which reveals critical biomarkers like glucose, lactate, electrolytes, pH, and cortisol.

View Article and Find Full Text PDF

Microfluidic chips play a crucial role in wearable sensors for sweat collection. However, previously reported wearable microfluidic chips, such as those based on poly(dimethylsiloxane) (PDMS) and paper, encounter sweat accumulation at the skin-sensor interface in practical applications, which consequently affects both sensing stability and wearing comfort. Herein, we propose a composite nanofiber membrane (CNMF)-based microfluidic chip for in situ sweat collection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!