J Prosthodont
Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece.
Published: August 2024
Purpose: To investigate the effects of the elemental composition and the manufacturing process of cobalt chromium-molybdenum (CoCr-Mo), cobalt chromium-tungsten (CoCr-W), and CoCr-Mo-W alloys on metal-ceramic bond strength.
Materials And Methods: Six CoCr-based alloys were included in this study, a were classified into three different groups depending on their elemental composition (Ν = 10, for each group). The first group had molybdenum (Mo) as the third alloying element, the second group contained tungsten (W) (without Mo), and the third group included both alloying elements. The groups were further divided by the manufacturing process (casting or selective laser melting, SLM). Interfacial analysis was carried out using backscattered electron imaging (BEI) and energy-dispersive X-ray microanalysis (EDX) operating in line scan mode. The metal-ceramic bond strength was tested by a 3-point bending test according to the ISO 9693 requirements. The fracture mode of all specimens was examined under a stereomicroscope. The bond strength results were statistically analyzed by 2-way ANOVA and Tukey's multiple comparison post hoc test (a = 0.05).
Results: A continuous interface with the porcelain was found without pores, debonding areas, or other defects. Of the major elements found at the interface, Co showed the highest diffusion rate, while titanium (Ti) had the lowest diffusion rate. No statistically significant differences were identified in metal-ceramic bond strength either among materials or between manufacturing processes. The fracture mode was found to be cohesive for all specimens.
Conclusions: The metal-ceramic bond strength is independent of the current CoCr alloy type and manufacturing process when comparing conventional casting and SLM. Interfacial analysis revealed no differences between the tested groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jopr.13918 | DOI Listing |
Med Sci Monit
January 2025
Department of Endodontics, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey.
BACKGROUND Different temperature conditions can affect the efficiency of irrigation solutions and consequently the ability of canal sealers to bond to root canal walls. The aim of this endodontic study was to evaluate the effect of irrigation solutions at different temperatures on the bond strength of a bioceramic-based root canal sealer. MATERIAL AND METHODS Root canal preparations were completed through irrigation with the following solutions: Group 1 was irrigated with 5 ml NaOCl (sodium hypochlorite) +5 ml EDTA (Ethylenediamine tetra-acetic acid) (22°C); Group 2 was irrigated with 5 ml NaOCl +5 ml EDTA (37°C); Group 3 was irrigated with 5 ml NaOCl +5 ml GA (Glycolic acid) (22°C); Group 4 was irrigated with 5 ml NaOCl +5 ml GA (37°C), Group 5 was irrigated with 20 ml Dual Rinse® HEDP (Etidronate) - NaOCl mixture (22°C); and Group 6 was irrigated with 20 ml of Dual Rinse® HEDP mixture (37°C).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India.
Polydopamine (PD), inspired by the wet adhesion mechanism of mussel foot proteins, has emerged as a promising adhesive material with wide-ranging applications. This study aimed to compare the adhesive properties of PD and Glass Ionomer Cement (GIC) on enamel and dentin substrates, evaluating PD's potential as an alternative adhesive in dental practice. A total of 120 human premolars were prepared, with 80 teeth allocated for Scanning Electron Microscopy (SEM) analysis and 40 teeth reserved for shear bond strength testing.
View Article and Find Full Text PDFInt J Paediatr Dent
January 2025
Department of Paediatric Dentistry, Medical Centre for Dentistry, University Medical Centre Giessen and Marburg GmbH (Campus Giessen), Justus-Liebig-University, Giessen, Germany.
Background: Limited reports are available regarding bonding of universal adhesives to primary teeth' enamel.
Aim: To evaluate the effect of application mode and aging on microtensile bond strength (μTBS) of universal adhesives to primary enamel.
Design: Ninety-six human primary molars were randomly assigned to three groups: SU: Scotchbond Universal (3M); CU: Clearfil Universal Bond Quick (Kuraray Noritake); iBU: iBond Universal (Heraeus Kulzer), then subdivided according to phosphoric acid etching time into three subgroups (SG): SG1: 0s; SG2: 15s; SG3: 30s.
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022 China. Electronic address:
HBT-DPI was a single-molecule multi-conformational fluorescent material and had unique applications for hydrophobic/hydrophilic mapping on large-scale heterogeneous surfaces. In this paper, the different proton transfer processes and luminescence mechanisms of HBT-DPI in Dichloromethane (DCM, no hydrogen bond (HB) receptor) and N, N-Dimethylformamide (DMF, HB receptor) solvents were systematically studied. Using the quantum chemistry method, the stable structures of HBT-DPI in two solvents were determined based on the Boltzmann distribution.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108 China. Electronic address:
The development of high-performance electrocatalysts for hydrogen evolution reaction (HER) in different pH conditionsis pivotal in producing green hydrogen, but remains challenging. Herein, we regulate the p-d orbitals hybridization between B and Pt for effective and durable HER at all pH ranges by controlling the inserted B atom. Consequently, the optimized B-doped Pt catalysts with 20 at.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.