In recent years, there has been a drastic surge in neurological disorders with sporadic cases contributing more than ever to their cause. Radiation exposure through diagnostic or therapeutic routes often results in neurological injuries that may lead to neurodegenerative pathogenesis. However, the underlying mechanisms regulating the neurological impact of exposure to near-low doses of ionizing radiation are not known. In particular, the neurological changes caused by metabolomic reprogramming have not yet been elucidated. Hence, in the present study, C57BL/6 mice were exposed to a single whole-body X-ray dose of 0.5 Gy, and 14 days post-treatment, the hippocampus was subjected to metabolomic analysis. The hippocampus of the irradiated animals showed significant alterations in 15 metabolites, which aligned with altered tyrosine, phenylalanine, and alpha-linolenic acid metabolism and the biosynthesis of unsaturated fatty acids. Furthermore, a multiomics interaction network comprising metabolomics and RNA sequencing data analysis provided insights into gene-metabolite interactions. Tyrosine metabolism was revealed to be the most altered, which was demonstrated by the interaction of several crucial genes and metabolites. The present study revealed the regulation of low-dose radiation-induced neurotoxicity at the metabolomic level and its implications for the pathogenesis of neurological disorders. The present study also provides novel insights into metabolomic pathways altered following near-low-dose IR exposure and its link with neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413841 | PMC |
http://dx.doi.org/10.1021/acschemneuro.4c00231 | DOI Listing |
Alzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: The TREAT-AD centers aim to improve Alzheimer's Disease (AD) research by offering free, high-quality tools and technologies. Lyn is a tyrosine kinase that belongs to the Src family kinases. The expression of Lyn and its activity have been implicated in AD.
View Article and Find Full Text PDFBackground: Abnormal glucose metabolism in AD brains correlates with cognitive deficits. The glucose changes are consistent with brain thiamine (vitamin B1) deficiency. In animals, thiamine deficiency causes multiple AD-like changes including memory loss, neuron loss, brain inflammation, enhanced phosphorylation of tau, exaggerated plaque formation and elevated advanced glycation end products (AGE).
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang, Hangzhou, China.
Background: Skin pigmentation disorders may increase patients' psychological burdens. Consequently, they are increasingly attracting attention. Dermal fibroblasts have been shown to regulate pigmentation by secreting soluble factors.
View Article and Find Full Text PDFCell Commun Signal
January 2025
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
Background: Staphylococcus aureus, a known contributor to non-healing wounds, releases vesicles (SAVs) that influence the delicate balance of host-pathogen interactions. Efferocytosis, a process by which macrophages clear apoptotic cells, plays a key role in successful wound healing. However, the precise impact of SAVs on wound repair and efferocytosis remains unknown.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China.
Pulmonary fibrosis is a pathological manifestation that occurs upon lung injury and subsequence aberrant repair with poor prognosis. However, current treatment is limited and does not distinguish different disease stages. Here, we aimed to study the differential functions of Axl, a receptor tyrosine kinase expressing on both macrophages and fibroblasts, in the whole course of pulmonary fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!