Far-Field Phase-Shifting Structured Light Illumination Enabled by Polarization Multiplexing Metasurface for Super-Resolution Imaging.

Nano Lett

National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

Published: September 2024

The phase-shifting structured light illumination technique is widely used in imaging but often relies on mechanical translation stages or spatial light modulators, leading to system instability, low displacement accuracy, and limited integration feasibility. In response to these challenges, we propose and demonstrate an approach for generating far-field phase-shifting structured light using a polarization multiplexing metasurface. By controlling the polarization states of incident and transmitted light, the metasurface creates a three-step displacement of structured light, eliminating the need to move samples or illumination sources. As a proof of concept, we experimentally demonstrate microscopic imaging using structured light illumination generated by metasurfaces, extracting high-frequency information from objects, and surpassing the diffraction limit. The proposed metasurface platform offers a promising approach for developing compact and robust phase-shifting imaging systems, with broad prospects in quantitative detection, machine vision, and beyond.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c03142DOI Listing

Publication Analysis

Top Keywords

structured light
20
phase-shifting structured
12
light illumination
12
far-field phase-shifting
8
polarization multiplexing
8
multiplexing metasurface
8
light
7
structured
5
illumination
4
illumination enabled
4

Similar Publications

ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.

View Article and Find Full Text PDF

Topological edge states (TESs) and topological corner states (TCSs) in photonic crystals (PCs) provide an effective way to control the propagation and localization of light. The topological performance of integrated photonic devices can be improved by introducing the basic structural unit of photonic quasicrystals (PQCs) into PCs. However, the previous works arranged the basic structural unit of Stampfli-type and 12-fold Penrose-type photonic quasicrystals into triangular lattices, which have a complex structure and allow light to only propagate around 60° or 120° corners, limiting their applications.

View Article and Find Full Text PDF

A criterion for the characterization of the retardance effects produced by depolarizing and nondepolarizing linear media on interacting light is established based on Mueller matrices algebra. A consistent general description of retardance properties is performed by means of a serial decomposition of the Mueller matrix into three components, namely an element that encompasses the enpolarizing and depolarizing properties sandwiched by two elliptical retarders containing complete and decoupled information on retardance. The inherent ambiguity derived from the coincident formal structure of rotation matrices and circular retarders is removed though the introduction of the entrance and exit intrinsic reference frames, leading to the concepts of the intrinsic entrance and exit linear retarders, which are defined from the Mueller matrix itself and that are independent of the laboratory reference frames used to represent the incident and emerging polarized light beams, respectively.

View Article and Find Full Text PDF

A theoretical method is proposed for generating far-zone scattered fields with concentric ring-like intensity distribution by properly controlling the distribution characteristics of particles. As an example, a collection of anisotropic Gaussian-centered determinate particles with quasi-homogeneous distribution is discussed. The results show that the number and size of concentric rings can be flexibly adjusted by controlling the structural parameters of the collection of particles.

View Article and Find Full Text PDF

The incorporation of Sb ions into all-inorganic halide lead-free perovskites bestows them with remarkable photoluminescence characteristics, including an extensive color tuning range, elevated photoluminescence quantum yield (PLQY), and reversible color transitions, which hold significant promise for applications in light-emitting diodes, anti-counterfeiting encryption technologies, and photodetectors. Sb ions not only create new optical absorption channels but also can be integrated into these materials as activators or sensitizers to modulate the bandgap and band structure. This review focuses on the optical properties of Sb ion-doped lead-free halide perovskites while examining potential energy transfer pathways across various doping systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!