Graphene has demonstrated potential for use in neuromorphic electronics due to its superior electrical properties. However, these devices are all based on graphene sheets without patterning, restricting its applications. Here, we demonstrate a graphene nanoribbon synaptic transistor (GNST), with the graphene nanoribbon (GNR) channels fabricated using an electro-hydrodynamically printed nanowire array as lithographic masks for scalable fabrication. The GNST shows tunable synaptic plasticity by spike duration, frequency, and number. Moreover, the device is energy-efficient and ambipolar and shows a regulated response by nanoribbon width. The characteristics of GNSTs are applicable to pattern recognition, showing an accuracy of 84.5%. The device is applicable to Pavlov's classical conditioning. This study reports the first synaptic transistor based on GNRs, providing new insights into future neuromorphic electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c02149 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States.
Vanadium oxide (VO) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic computing, and tunable metasurfaces. Nonetheless, the mechanism responsible for its metal-insulator phase transition remains a subject of vigorous debate. Here, we investigate the ultrafast dynamics of the photoinduced phase transition in VO under low perturbation conditions.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
Research on memristive devices to seamlessly integrate and replicate the dynamic behaviors of biological synapses will illuminate the mechanisms underlying parallel processing and information storage in the human brain, thereby affording novel insights for the advancement of artificial intelligence. Here, an artificial electric synapse is demonstrated on a one-step Mo-selenized MoSe memristor, having not only long-term stable resistive switching characteristics (reset 0.51 ± 0.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
Molecular electronics exhibiting resistive-switching memory features hold great promise for the next generation of digital technology. In this work, electrosynthesis of ruthenium polypyridyl nanoscale oligomeric films is demonstrated on an indium tin oxide (ITO) electrode followed by an ITO top contact deposition yielding large-scale (junction area = 0.7 × 0.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physics and Astronomy, University of Nottingham, Nottingham, UK.
Ferroelectrics based on van der Waals semiconductors represent an emergent class of materials for disruptive technologies ranging from neuromorphic computing to low-power electronics. However, many theoretical predictions of their electronic properties have yet to be confirmed experimentally and exploited. Here, we use nanoscale angle-resolved photoemission electron spectroscopy and optical transmission in high magnetic fields to reveal the electronic band structure of the van der Waals ferroelectric indium selenide (α-InSe).
View Article and Find Full Text PDFNat Commun
January 2025
Key Lab of Fabrication Technologies for Integrated Circuits Institute of Microelectronics, Chinese Academy of Sciences, 100029, Beijing, China.
Visual sensors, including 3D light detection and ranging, neuromorphic dynamic vision sensor, and conventional frame cameras, are increasingly integrated into edge-side intelligent machines. However, their data are heterogeneous, causing complexity in system development. Moreover, conventional digital hardware is constrained by von Neumann bottleneck and the physical limit of transistor scaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!