When in contact with charged solid surfaces, ionic liquids (ILs) are known to form solvation structures consisting of alternating cation and anion layers. This phenomenon is considered to originate from the adsorption layer of counterions overcompensating the surface charge, so-called overscreening. However, the response of these layers to surfaces with near-zero or extremely high surface charge density (σ) remains inadequately understood. Here, we probe the solvation structure of ILs on alkali halide surfaces with varied surface orientations: nearly zero-charged RbI(100) and highly charged RbI(111), by employing frequency modulation atomic force microscopy with atomic resolution. Two commonly used ILs are examined in this study: 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Cmpyr][NTf]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Cmim][NTf]). On RbI(100) surfaces with near zero σ, we observe alternating cation and anion layers, diverging from the previously proposed monolayer model for IL/alkali halide(100) interfaces. These results support the argument that overscreening occurs under low σ, even approaching zero, and reconcile conflicting experimental conclusions about low σ systems. On RbI(111) surfaces with high σ, we identify solvation structures consisting of two consecutive counterion layers. This structure aligns with the theoretically predicted crowding; a phenomenon rarely observed in commonly used ILs due to typically unreachable σ in electrochemical IL/electrode systems. Our findings indicate that alkali halide(111) surfaces are potentially valuable for exploring the crowding phenomenon in ILs, addressing the current scarcity of experimental observations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c08838DOI Listing

Publication Analysis

Top Keywords

surface charge
12
varied surface
8
atomic force
8
force microscopy
8
solvation structures
8
structures consisting
8
alternating cation
8
cation anion
8
anion layers
8
commonly ils
8

Similar Publications

Designing catalysts with well-defined active sites with chemical functionality responsive to visible light has significant potential for overcoming scaling relations limiting chemical reactions over heterogeneous catalyst surfaces. Visible light can be leveraged to facilitate the removal of strongly bound species from well-defined single cationic sites (Rh) under mild conditions (323 K) when they are incorporated within a photoactive perovskite oxide (Rh-doped SrTiO). CO, a key intermediate in many chemistries, forms stable geminal dicarbonyl Rh complexes (Rh(CO)), that could act as site blockers or poisons during a catalytic cycle.

View Article and Find Full Text PDF

Ultrathin, Friendly Environmental, and Flexible CsPb(Cl/Br)-Silica Composite Film for Blue-Light-Emitting Diodes.

Langmuir

December 2024

Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.

Due to intrinsic defects in blue-light-emitting perovskite materials, the charge carriers are prone to being trapped by the trap states. Therefore, the preparation of efficient blue-light-emitting perovskite materials remains a significant challenge. Herein, CsPb(Cl/Br) nanocrystal (NCs)@SiO structures were fabricated through hydrolyzing (3-aminopropyl)-triethoxysilane (APTS).

View Article and Find Full Text PDF

A novel copper and iron doped containing chitosan and heparin sodium carbon dots (CS-Cu,Fe/HS) nanozyme was formulated through a single-step microwave digestion method. CS-Cu,Fe/HS exhibits excellent peroxidase (POD)-like activity and positive charge characteristics, and it can oxidize the negatively charged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in the presence of HO to produce a green compound (ox-ABTS). Furthermore, CS-Cu,Fe/HS enhances electron transfer and provides additional active sites through the valence state transformations of Fe/Fe and Cu/Cu.

View Article and Find Full Text PDF

d-Allulose 3-epimerase (DAEase) derived from has excellent properties in the catalytic production of d-allulose, a rare sugar with unique biological functions. However, the industrial application of DAEase (Cb-DAEase) for d-allulose production is hindered by its low enzyme activity, poor long-term thermostability, and pH tolerance. In this study, we identified potential noncatalytic residues in Cb-DAEase using methods such as proline substitution, surface charge engineering, and surface residue prediction.

View Article and Find Full Text PDF

This article investigates the influence of dopant molecules on the structural and dynamic properties of lipid bilayers in liposomes, with a focus on the effects of dopant concentration, size, and introduced electric charge. Experimental studies were performed using electron paramagnetic resonance (EPR) spectroscopy with spin probes, complemented by Monte Carlo simulations. Liposomes, formed via lecithin sonication, were doped with compounds of varying concentrations and analyzed using EPR spectroscopy to assess changes in membrane rigidity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!