NIR-II AIEgens for Infectious Diseases Phototheranostics.

Angew Chem Int Ed Engl

Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.

Published: December 2024

Pathogenic infectious diseases have persistently posed significant threats to public health. Phototheranostics, which combines the functions of diagnostic imaging and therapy, presents an extremely promising solution to block the spread of pathogens as well as the outbreak of epidemics owing to its merits of a wide-spectrum of activity, high controllability, non-invasiveness, and difficult to acquire resistance. Among multifarious phototheranostic agents, second near-infrared (NIR-II, 1000-1700 nm) aggregation-induced emission luminogens (AIEgens) are notable by virtue of their deep penetration depth, excellent biocompatibility, balanced radiative and nonradiative decay and aggregation-enhanced theranostic performance, making them an ideal option for combating pathogens. This minireview provides a systematical summary of the latest advancements in NIR-II AIEgens with emphasis on the molecular design and nanoplatform formulation to fulfill high-efficiency in treating bacterial and viral pathogens, classified by disease models. Then, the current challenges, potential opportunities, and future research directions are presented to facilitate the further progress of this emerging field.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202414259DOI Listing

Publication Analysis

Top Keywords

nir-ii aiegens
8
infectious diseases
8
aiegens infectious
4
diseases phototheranostics
4
phototheranostics pathogenic
4
pathogenic infectious
4
diseases persistently
4
persistently posed
4
posed threats
4
threats public
4

Similar Publications

Molecularly manipulating pyrazinoquinoxaline derivatives to construct NIR-II AIEgens for multimodal phototheranostics of breast cancer bone metastases.

Biomaterials

January 2025

Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China. Electronic address:

Multimodal phototheranostics on the basis of single molecular species shows inexhaustible and vigorous vitality, particularly those emit fluorescence in the second near-infrared window (NIR-II), the construction of such exceptional molecules nonetheless retains formidably challenging. In view of the undiversified molecular skeletons and insufficient phototheranostic outputs of previously reported NIR-II fluorophores, herein, electron acceptor engineering based on heteroatom-inserted rigid-planar pyrazinoquinoxaline was manipulated to fabricate aggregation-induced emission (AIE)-featured NIR-II counterparts with donor-acceptor-donor (D-A-D) architecture. Systematical investigations substantiated that one of those synthesized AIE molecules, namely 4TPQ, incorporating a fused thiophene acceptor, synchronously exhibited high molar absorptivity (ε), NIR-II emission, typical AIE tendency, significant reactive oxygen species (ROS) generation, and high photothermal conversion efficiency.

View Article and Find Full Text PDF

Integration of Motion and Stillness: A Paradigm Shift in Constructing Nearly Planar NIR-II AIEgen with Ultrahigh Molar Absorptivity and Photothermal Effect for Multimodal Phototheranostics.

J Am Chem Soc

January 2025

Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical & Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.

The two contradictory entities in nature often follow the principle of unity of opposites, leading to optimal overall performance. Particularly, aggregation-induced emission luminogens (AIEgens) with donor-acceptor (D-A) structures exhibit tunable optical properties and versatile functionalities, offering significant potential to revolutionize cancer treatment. However, trapped by low molar absorptivity (ε) owing to the distorted configurations, the ceilings of their photon-harvesting capability and the corresponding phototheranostic performance still fall short.

View Article and Find Full Text PDF

Aggregation-Induced Emission Luminogens Realizing High-Contrast Bioimaging.

ACS Nano

January 2025

Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China.

A revolutionary transformation in biomedical imaging is unfolding with the advent of aggregation-induced emission luminogens (AIEgens). These cutting-edge molecules not only overcome the limitations of traditional fluorescent probes but also improve the boundaries of high-contrast imaging. Unlike conventional fluorophores suffering from aggregation-caused quenching, AIEgens exhibit enhanced luminescence when aggregated, enabling superior imaging performance.

View Article and Find Full Text PDF

A water-soluble aggregation-induced emission luminogen for NIR-I/NIR-II fluorescence imaging of breast cancer bone metastases.

Biosens Bioelectron

January 2025

School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China. Electronic address:

Article Synopsis
  • Advanced breast cancer often spreads to bones, but current diagnostic methods like imaging and blood tests have limitations such as delays and high costs.
  • Optical imaging, on the other hand, offers a simpler and more effective approach with high resolution, though developing suitable chromophores for diagnostics remains challenging.
  • The study introduces PEGTPA-NSD, a new water-soluble AIE luminogen, which can form stable nanoparticles and effectively images breast cancer bone metastases using NIR-I and NIR-II fluorescence, promising improved diagnostic strategies.*
View Article and Find Full Text PDF

Strength in Numbers: A Giant NIR-II AIEgen with One-for-All Phototheranostic Features for Exceptional Orthotopic Bladder Cancer Treatment.

Angew Chem Int Ed Engl

October 2024

School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, P. R. China.

One-for-all phototheranostics that allows the simultaneous implementations of multiple optical imaging and therapeutic modalities by utilizing a single component, is growing into a sparkling frontier in cancer treatment. Of particular interest is phototheranostic agent with emission in the second near-infrared (NIR-II) window. Nevertheless, the practical uses of those conventional NIR-II agents are severely impeded by their unsatisfactory features including insufficient stability, low synthetic yield, to be extended absorption/ emission wavelengths, and inefficient phototheranostic outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!