AI Article Synopsis

  • * This scaffold consists of three components: a porous structure for bone, a hydrogel for cartilage, and oriented fibers for tendon, all engineered to promote cell differentiation and healing.
  • * Results show that the scaffold not only matches the mechanical properties of TBI but also enhances the healing process in a rat model, indicating its potential for effective TBI regeneration.

Article Abstract

Background: Tendon-bone interface (TBI) repair is slow and challenging owing to its hierarchical structure, gradient composition, and complex function. In this work, enlightened by the natural characteristics of TBI microstructure and the demands of TBI regeneration, a structure, composition, and function-based scaffold was fabricated. : The biomimetic scaffold was designed based on the "tissue-inducing biomaterials" theory: (1) a porous scaffold was created with poly-lactic-co-glycolic-acid, nano-hydroxyapatite and loaded with BMP2-gelatin to simulate the bone (BP); (2) a hydrogel was produced from sodium alginate, type I collagen, and loaded with TGF-β3 to simulate the cartilage (CP); (3) the L-poly-lactic-acid fibers were oriented to simulate the tendon (TP). The morphology of tri-layered constructs, gelation kinetics, degradation rate, release kinetics and mechanical strength of the scaffold were characterized. Then, bone marrow mesenchymal stem cells (MSCs) and tenocytes (TT-D6) were cultured on the scaffold to evaluate its gradient differentiation inductivity. A rat Achilles tendon defect model was established, and BMSCs seeded on scaffolds were implanted into the lesionsite. The tendon-bone lesionsite of calcaneus at 4w and 8w post-operation were obtained for gross observation, radiological evaluation, biomechanical and histological assessment.

Results: The hierarchical microstructures not only endowed the scaffold with gradual composition and mechanical properties for matching the regional biophysical characteristics of TBI but also exhibited gradient differentiation inductivity through providing regional microenvironment for cells. Moreover, the scaffold seeded with cells could effectively accelerate healing in rat Achilles tendon defects, attributable to its enhanced differentiation performance.

Conclusion: The hierarchical scaffolds simulating the structural, compositional, and cellular heterogeneity of natural TBI tissue performed therapeutic effects on promoting regeneration of TBI and enhancing the healing quality of Achilles tendon.

The Translational Potential Of This Article: The novel scaffold showed the great efficacy on tendon to bone healing by offering a structural and compositional microenvironment. The results meant that the hierarchical scaffold with BMSCs may have a great potential for clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342074PMC
http://dx.doi.org/10.1016/j.jot.2024.07.007DOI Listing

Publication Analysis

Top Keywords

scaffold
9
tendon-bone interface
8
characteristics tbi
8
gradient differentiation
8
differentiation inductivity
8
rat achilles
8
achilles tendon
8
structural compositional
8
tbi
6
structure ingredient
4

Similar Publications

Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.

View Article and Find Full Text PDF

Treatment of complex craniofacial deformities is still a challenge for medicine and dentistry because few approach therapies are available on the market that allow rehabilitation using 3D-printed medical devices. Thus, this study aims to create a scaffold with a morphology that simulates bone tissue, able to create a favorable environment for the development and differentiation of osteogenic cells. Moreover, its association with Plenum Guide, through cell-based tissue engineering (ASCs) for guided bone regeneration in critical rat calvarial defects.

View Article and Find Full Text PDF

As molecular research on hemp (Cannabis sativa L.) continues to advance, there is a growing need for the accumulation of more diverse genome data and more accurate genome assemblies. In this study, we report the three-way assembly data of a cannabidiol (CBD)-rich cannabis variety, 'Pink Pepper' cultivar using sequencing technology: PacBio Single Molecule Real-Time (SMRT) technology, Illumina sequencing technology, and Oxford Nanopore Technology (ONT).

View Article and Find Full Text PDF

Between scents and sterols: Cyclization of labdane-related diterpenes as model systems for enzymatic control of carbocation cascades.

J Biol Chem

December 2024

Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.

The citrus scent arises from the volatile monoterpene limonene, whose cyclic nature can be viewed as a miniaturized form of the poly-cyclic sterol triterpenoids. In particular, as these rings are all formed from poly-isoprenyl precursors via carbocation cascades. However, the relevant reactions are initiated by distinct mechanisms, either lysis/ionization of an allylic diphosphate ester bond, as in limonene synthases, or protonation of a terminal olefin or epoxide, as in lanosterol synthases.

View Article and Find Full Text PDF

A Review on zerumbone and its semisynthetic Analogs: Synthesis and Implications in Medicinal chemistry.

Bioorg Chem

December 2024

Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India. Electronic address:

Natural products and their semisynthetic analogs have long standing history in generating and identifying lead and drug candidates for various therapeutic areas. Zerumbone 1, a unique 11 membered monocyclic sesquiterpene natural product is isolated from Zingiber zerumbet (L. Smith) and related species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!