Neuronal diversity and function are intricately linked to the dynamic regulation of RNA metabolism, including splicing, localization, and translation. Electrophysiologic studies of synaptic plasticity, models for learning and memory, are disrupted in Fragile X Syndrome (FXS). FXS is characterized by the loss of FMRP, an RNA-binding protein (RBP) known to bind and suppress translation of specific neuronal RNAs. Since molecular studies have demonstrated that synaptic plasticity in CA1 excitatory hippocampal neurons is protein-synthesis dependent, together these observations have suggested a potential role for FMRP in synaptic plasticity in FXS. To explore this model, we developed a new experimental platform, Opto-CLIP, to integrate optogenetics with cell-type specific FMRP CLIP and RiboTag in CA1 hippocampal neurons, allowing investigation of FMRP-regulated dynamics after neuronal activation. We tracked changes in FMRP binding and ribosome-associated RNA profiles 30 minutes after neuronal activation. Our findings reveal a significant reduction in FMRP-RNA binding to transcripts encoding nuclear proteins, suggesting FMRP translational inhibition may be de-repressed to allow rapid translational responses required for neuronal homeostasis. In contrast, FMRP binding to transcripts encoding synaptic targets were generally stable after activation, but all categories of targets demonstrated variability in FMRP translational control. Opto-CLIP revealed differential regulation of subsets of transcripts within CA1 neurons rapidly after depolarization, and offers promise as a generally useful platform to uncover mechanisms of RBP-mediated RNA regulation in the context of synaptic plasticity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343148 | PMC |
http://dx.doi.org/10.1101/2024.08.13.607210 | DOI Listing |
Adv Mater
January 2025
Italian Institute of Technology, Genoa, 16163, Italy.
Presently, the in vitro recording of intracellular neuronal signals on microelectrode arrays (MEAs) requires complex 3D nanostructures or invasive and approaches such as electroporation. Here, it is shown that laser poration enables intracellular coupling on planar electrodes without damaging neurons or altering their spontaneous electrophysiological activity, allowing the process to be repeated multiple times on the same cells. This capability distinguishes laser-based neuron poration from more invasive methods like electroporation, which typically serve as endpoint measurement for cells.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey.
Fucosidosis is a rare lysosomal storage disease caused by α-L-fucosidase deficiency following a mutation in the gene. This enzyme is responsible for breaking down fucose-containing glycoproteins, glycolipids, and oligosaccharides within the lysosome. Mutations in result in either reduced enzyme activity or complete loss of function, leading to the accumulation of fucose-rich substrates in lysosomes.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Neuropharmacology Laboratory, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.
Chronic cocaine use triggers inflammatory and oxidative processes in the central nervous system, resulting in impaired microglia. Mesenchymal stem cells, known for their immunomodulatory properties, have shown promise in reducing inflammation and enhancing neuronal survival. The study employed the cocaine self-administration model, focusing on ionized calcium-binding adaptor protein 1 (Iba-1) and cell morphology as markers for microglial impairment and PLX-PAD cells as a treatment for attenuating cocaine craving.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy.
Over the last three decades, adult neurogenesis in mammals has been a central focus of neurobiological research, providing insights into brain plasticity and function. However, interest in this field has recently waned due to challenges in translating findings into regenerative applications and the ongoing debate about the persistence of this phenomenon in the adult human brain. Despite these hurdles, significant progress has been made in understanding how adult neurogenesis plays a critical role in the adaptation of brain circuits to environmental stimuli regulating key brain functions.
View Article and Find Full Text PDFMolecules
December 2024
Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland.
The gut-brain axis (GBA) is a complex communication network connecting the gastrointestinal tract (GIT) and the central nervous system (CNS) through neuronal, endocrine, metabolic, and immune pathways. Omega-3 (n-3) fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are crucial food components that may modulate the function of this axis through molecular mechanisms. Derived mainly from marine sources, these long-chain polyunsaturated fatty acids are integral to cell membrane structure, enhancing fluidity and influencing neurotransmitter function and signal transduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!