Background: Polymethylmethacrylate (PMMA) bone cement is extensively used in spinal procedures such as vertebroplasty and kyphoplasty, while its use in percutaneous cement discoplasty (PCD) is not yet widely spread. A main issue for both application sites, vertebra and disc, is the mismatch in stiffness between cement and bone, potentially resulting in adjacent vertebral fractures and adjacent segment disease. Tailoring the cement modulus using additives is hence an interesting strategy. However, there is a lack of data on the tensile and tension-compression fatigue properties of these cements, relevant to the newly researched indication of PCD.
Method: A commercial PMMA cement (VS) was modified with 12%vol of linoleic acid (VSLA) and tested for quasi-static tensile properties. Additionally, tension-compression fatigue testing with amplitudes ranging from +/-5MPa to +/-7MPa and +/-9MPa was performed, and a Weibull three-parameter curve fit was used to calculate the fatigue parameters.
Results: Quasi-static testing revealed a significant reduction in VSLA's Young's Modulus (E=581.1±126.4MPa) compared to the original cement (E=1478.1±202.9MPa). Similarly, the ultimate tensile stress decreased from 36.6±1.5MPa to 11.6±0.8MPa. Thus, VSLA offers improved compatibility with trabecular bone properties. Fatigue testing of VSLA revealed that as the stress amplitude increased the Weibull mean number decreased from 3591 to 272 and 91 cycles, respectively. In contrast, the base VS cement reached run-out at the highest stress amplitude. However, the lowest stress amplitude used exceeds the pressures recorded in the disc , and VSLA displayed a similar fatigue life range to that of the annulus fibrosis tissue.
Conclusions: While the relevance of fully reversed tension-compression fatigue testing can be debated for predicting cement performance in certain spinal applications, the results of this study can serve as a benchmark for comparison of low-modulus cements for the spine. Further investigations are necessary to assess the clinical feasibility and effectiveness of these cements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344196 | PMC |
http://dx.doi.org/10.12688/openreseurope.16683.2 | DOI Listing |
Materials (Basel)
November 2024
Institude of Applied Mechanics and Mechatronics, Slovak University of Technology, Námestie Slobody 17, 81231 Bratislava, Slovakia.
The paper presents the original results of cyclic testing of materials that are identical in chemical composition but produced by two different technologies: conventional metallurgy and additive manufacturing. For the aluminium alloy AlSi10Mg and the austenitic steel 316L, tensile curves, tension-compression and torsion alternating fatigue curves are experimentally obtained and presented. The experimental results are compared for two fabrication technologies-conventional metallurgy and additive DLMS technology.
View Article and Find Full Text PDFOpen Res Eur
May 2024
Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Uppsala County, 75121, Sweden.
Background: Polymethylmethacrylate (PMMA) bone cement is extensively used in spinal procedures such as vertebroplasty and kyphoplasty, while its use in percutaneous cement discoplasty (PCD) is not yet widely spread. A main issue for both application sites, vertebra and disc, is the mismatch in stiffness between cement and bone, potentially resulting in adjacent vertebral fractures and adjacent segment disease. Tailoring the cement modulus using additives is hence an interesting strategy.
View Article and Find Full Text PDFPolymers (Basel)
July 2024
Department of Mechanical Engineering, The University of North Texas, Denton, TX 76203-1277, USA.
Continuous-fiber-reinforced composite lattice structures (CFRCLSs) have garnered attention due to their lightweight and high-strength characteristics. Over the past two decades, many different topological structures including triangular, square, hexagonal, and circular units were investigated, and the basic mechanical responses of honeycomb structures under various load conditions, including tension, compression, buckling, shear, and fatigue were studied. To further improve the performance of the honeycombs, appropriate optimizations were also carried out.
View Article and Find Full Text PDFMaterials (Basel)
June 2024
Institute of Joining and Welding, Technische Universität Braunschweig, Langer Kamp 8, 38106 Braunschweig, Germany.
A reliable local-fatigue assessment approach for rotary friction-welded components does not yet exist. The scope of this paper is to present test results for the fatigue behaviour of rotary friction-welded solid shafts made of structural steel S355J2G3 (1.0570) and an approach to fatigue assessment considering residual stress.
View Article and Find Full Text PDFMaterials (Basel)
June 2024
Department Medicina Dentaire, Facultade de Medicina, Universidade de Coimbra, Palácio dos Grilos, Rua da Ilha, 3000-214 Coimbra, Portugal.
Implantoplasty is a technique increasingly used to remove the biofilm that causes peri-implantitis on dental implants. This technique of mechanization of the titanium surface makes it possible to eliminate bacterial colonies, but it can generate variations in the properties of the implant. These variations, especially those in fatigue resistance and electrochemical corrosion behavior, have not been studied much.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!