Gene expression and brain imaging association study reveals gene signatures in major depressive disorder.

Brain Commun

College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, P.R. China.

Published: August 2024

Major depressive disorder is often characterized by changes in the structure and function of the brain, which are influenced by modifications in gene expression profiles. How the depression-related genes work together within the scope of time and space to cause pathological changes remains unclear. By integrating the brain-wide gene expression data and imaging data in major depressive disorder, we identified gene signatures of major depressive disorder and explored their temporal-spatial expression specificity, network properties, function annotations and sex differences systematically. Based on correlation analysis with permutation testing, we found 345 depression-related genes significantly correlated with functional and structural alteration of brain images in major depressive disorder and separated them by directional effects. The genes with negative effect for grey matter density and positive effect for functional indices are enriched in downregulated genes in the post-mortem brain samples of patients with depression and risk genes identified by genome-wide association studies than genes with positive effect for grey matter density and negative effect for functional indices and control genes, confirming their potential association with major depressive disorder. By introducing a parameter of dispersion measure on the gene expression data of developing human brains, we revealed higher spatial specificity and lower temporal specificity of depression-related genes than control genes. Meanwhile, we found depression-related genes tend to be more highly expressed in females than males, which may contribute to the difference in incidence rate between male and female patients. In general, we found the genes with negative effect have lower network degree, more specialized function, higher spatial specificity, lower temporal specificity and more sex differences than genes with positive effect, indicating they may play different roles in the occurrence and development of major depressive disorder. These findings can enhance the understanding of molecular mechanisms underlying major depressive disorder and help develop tailored diagnostic and treatment strategies for patients of depression of different sex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342243PMC
http://dx.doi.org/10.1093/braincomms/fcae258DOI Listing

Publication Analysis

Top Keywords

major depressive
32
depressive disorder
32
gene expression
16
depression-related genes
16
genes
12
gene signatures
8
major
8
signatures major
8
depressive
8
disorder
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!