Gut microbiome related to metabolic diseases after moderate-to-vigorous intensity exercise.

J Exerc Sci Fit

Exercise Physiology Laboratory, Kookmin University, Seoul, Republic of Korea.

Published: October 2024

AI Article Synopsis

Article Abstract

Background Objectives: The purpose of this study is to investigate changes in gut microbiota related to metabolic diseases after moderate and high-intensity exercise. A total of 24 participants were divided into three groups: Non-Exercise Group (NEG, n = 8, 28.6 ± 5.3 years, 176.0 ± 7.8 cm, 81.3 ± 14.6 kg), Moderate Intensity Exercise Group (MIEG, n = 8, 26.5 ± 3.3 years, 176.9 ± 5.0 cm, 75.4 ± 9.5 kg), and Vigorous Intensity Exercise Group (VIEG, n = 8, 30.6 ± 5.9 years, 174.2 ± 3.5 cm, 77.8 ± 12.2 kg).

Methods: The participants were selected by assessing physical activity, gut health status, presence of diseases, recent disease diagnoses, and dietary disorders. Those who reported any presence disease or recent disease diagnosis were excluded from the current study. Stool samples were collected after a 10-h fast for gut microbiome analysis. MIEG participants trained at 40-59 % heart rate reserve (HRR) for at least 150 min per week, while VIEG participants trained at ≥ 60 % HRR for at least 90 min per week. After 4 weeks, all participants provided stool samples for gut microbiome analysis.Data analysis was conducted using the Wilcoxon test, with statistical significance set at ≤ 0.05.

Results: The results indicated an increase in Prevotella in MIEG, while Veillonella, Dorea_formicigenerans, and Dorea_longicatena exhibited a decrease (p < 0.05). In VIEG, there was an increase in Bacteroides, Butyricimonas, Odoribacter, and Alistipes (p < 0.05).

Conclusion: These modified microbial groups were associated with factors related to metabolic diseases, including inflammatory bowel disease, obesity, colorectal cancer, diabetes, hypertension, metabolic liver diseases, and ischemic heart diseases. Additional research is essential to delve into the relationship between exercise and these alterations in the microbiome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342187PMC
http://dx.doi.org/10.1016/j.jesf.2024.07.003DOI Listing

Publication Analysis

Top Keywords

gut microbiome
12
intensity exercise
12
metabolic diseases
8
exercise group
8
stool samples
8
participants trained
8
gut
5
participants
5
microbiome metabolic
4
diseases moderate-to-vigorous
4

Similar Publications

Gut microbiota disruptions after allogeneic hematopoietic cell transplantation (alloHCT) are associated with increased risk of acute graft-versus-host disease (aGVHD). We designed a randomized, double-blind placebo-controlled trial to test whether healthy-donor fecal microbiota transplantation (FMT) early after alloHCT reduces the incidence of severe aGVHD. Here, we report the results from the single-arm run-in phase which identified the best of 3 stool donors for the randomized phase.

View Article and Find Full Text PDF

Antimicrobial regime for gut microbiota depletion in experimental mice models.

Methods Cell Biol

January 2025

Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic Barcelona, Barcelona, Spain; Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain. Electronic address:

Mice models serve as a valuable tool to study microbiome-immune system interactions. While the use of germ-free mice may represent the gold-standard method, antibiotic-based microbiome depletion provides a more cost-efficient and feasible system. The protocol here in presented provides a mild antimicrobial regime to deplete basal microbiota in 8-week-old C57BL/6 mice, aiming to ensure reproducibility in microbiota studies.

View Article and Find Full Text PDF

Background: Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products (AGEs), is endogenously produced and prevalent in various ultra-processed foods. MGO has emerged as a significant precursor implicated in the pathogenesis of type 2 diabetes and neurodegenerative diseases. To date, the effects of dietary MGO on the intestine have been limited explored.

View Article and Find Full Text PDF

Antibiotic-free responsive biomaterials for specific and targeted Helicobacter pylori eradication.

J Control Release

January 2025

Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China. Electronic address:

Gastric cancer is highly correlated with Helicobacter pylori (H. pylori) infection. Approximately 50 % of the population worldwide is infected with H.

View Article and Find Full Text PDF

Subphenotypes of Long COVID and the clinical applications of probiotics.

Biomed Pharmacother

January 2025

School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia. Electronic address:

As the number of infections and deaths attributable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to rise, it is now becoming apparent that the health impacts of the Coronavirus disease (COVID-19) may not be limited to infection and the subsequent resolution of symptoms. Reports have shown that patients with SARS-CoV-2 infection may experience multiple symptoms across different organ systems that are associated with adverse health outcomes and develop new cardiac, renal, respiratory, musculoskeletal, and nervous conditions, a condition known as Long COVID or the post-acute sequelae of COVID-19 (PASC). This review provides insights into distinct subphenotypes of Long COVID and identifies microbiota dysbiosis as a common theme and crucial target for future therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!