Electrical impedance dermography (EID), based on electrical impedance spectroscopy, is a specific technique for the evaluation of skin disorders that relies upon the application and measurement of painless, alternating electrical current. EID assesses pathological changes to the normal composition and architecture of the skin that influence the flow of electrical current, including changes associated with inflammation, keratinocyte and melanocyte carcinogenesis, and scarring. Assessing the electrical properties of the skin across a range of frequencies and in multiple directions of current flow can provide diagnostic information to aid in the identification of pathologic skin conditions. EID holds the promise of serving as a diagnostic biomarker and potential to be used in skin cancer detection and staging. EID may also be useful as a biomarker in monitoring effectiveness of treatment in individual patients and in therapeutic research. This review highlights ongoing efforts to improve mechanistic understanding of skin electrical changes, study of EID in a variety of clinical contexts, and further refine the technology to find greater clinical use in dermatology and dermatologic research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343630PMC
http://dx.doi.org/10.1155/2024/2085098DOI Listing

Publication Analysis

Top Keywords

electrical impedance
12
impedance dermography
8
electrical current
8
electrical
7
skin
6
eid
5
dermography background
4
current
4
background current
4
current state
4

Similar Publications

Detection of Extracochlear Electrodes Using Electrical Field Imaging (EFI).

Otol Neurotol

February 2025

Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota.

Objective: To analyze the use of electrical field imaging (EFI) in the detection of extracochlear electrodes in cochlear implants (CI).

Study Design: Retrospective cohort study.

Setting: Tertiary academic medical center.

View Article and Find Full Text PDF

There are limited studies on the phase angle (PhA) and sarcopenic obesity (SO) in the Chinese population. This study aimed to establish 50 kHz-PhA reference data for SO population, and to evaluate the correlation between 50 kHz-PhA and SO. A total of 10,312 participants including 5415 men and 4897 women were enrolled in this study, and their resistance and reactance at 50 kHz, and body composition parameters were measured a segmental multifrequency bioelectrical impedance analysis device (InBody 720).

View Article and Find Full Text PDF

The overall goal of this work was to assess the ability of Natural Killer cells to kill cultures of patient-derived glioblastoma cells. Herein we report impressive levels of NK-92 mediated killing of various patient-derived glioblastoma cultures observed at ET (effector: target) ratios of 5:1 and 1:1. This enabled direct comparison of the degree of glioblastoma cell loss across a broader range of glioblastoma cultures.

View Article and Find Full Text PDF

Heterostructures comprise two or more different semiconducting materials stacked either as co-assemblies or self-sorted based on their dynamics of aggregates. However, self-sorting in heterostructures is rather significant in improving the short exciton diffusion length and charge separation. Despite small organic molecules being known for their self-sorting nature, macrocyclic are hitherto unknown owing to unrestrained assemblies from extended π-conjugated systems.

View Article and Find Full Text PDF

Wireless power-up and readout from a label-free biosensor.

Biomed Microdevices

January 2025

Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.

Wearable and implantable biosensors have rapidly entered the fields of health and biomedicine to diagnose diseases and physiological monitoring. The use of wired medical devices causes surgical complications, which can occur when wires break, become infected, generate electrical noise, and are incompatible with implantable applications. In contrast, wireless power transfer is ideal for biosensing applications since it does not necessitate direct connections between measurement tools and sensing systems, enabling remote use of the biosensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!