studies of benzothiazole derivatives as potential inhibitors of and trehalase.

Front Bioinform

Covenant University Bio-Informatics Research Cluster (CUBRe), Covenant University, Ota, Ogun State, Nigeria.

Published: August 2024

AI Article Synopsis

  • Benzothiazole derivatives were investigated for their potential as insecticides targeting trehalase, an enzyme in malaria-transmitting Anopheles mosquitoes.
  • Research involved screening over 4,200 compounds from the PubChem database and conducting molecular docking simulations to find effective inhibitors against Anopheles funestus and Anopheles gambiae.
  • The study identified compounds with strong binding affinities, particularly compound 1, suggesting their promise as new insecticide candidates for malaria control.

Article Abstract

Introduction: In malaria management, insecticides play a crucial role in targeting disease vectors. Benzothiazole derivatives have also been reported to possess insecticidal properties, among several other properties they exhibit. The female Anopheles mosquito is responsible for transmitting the malaria parasite when infected. () and () are two of the most notable Anopheles species known to spread malaria in Nigeria. Trehalase is an enzyme that breaks down trehalose. Recent research has proposed it as a viable target for inhibition since it aids in flight and stress adaptation.

Methods: This study aimed to investigate benzothiazole derivatives as potential inhibitors of trehalase of Anopheles funestus (Tre) and Anopheles gambiae (Tre) using toxicity profiling, molecular docking, and dynamic simulation for future insecticidal intervention. A total of 4,214 benzothiazole-based compounds were obtained from the PubChem database and subjected to screening against the 3D modelled structure of Tre and Tre. Compounds with some toxicity levels were optimised, and the obtained lead compounds were further investigated through molecular docking studies. Furthermore, the best hit was subjected to parameters such as RMSD, RMSF, SASA, Rg, and hydrogen bond to confirm its stability when in a complex with Tre, and these parameters were compared to that of validamycin A (control ligand).

Results And Discussion: The post-screening analysis showed binding affinities of -8.7 and -8.2 kcal/mol (compound 1), -8.2 and -7.4 kcal/mol (compound 2), compared to -6.3 and -5.1 kcal/mol (Validamycin A, a known inhibitor) against Tre and Tre, respectively. The molecular dynamics simulation showed that compound 1 (the best hit) had good stability when in complex with Tre. These findings suggest that these best hits can serve as potential inhibitors for the development of novel insecticides in the control of malaria vectors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341456PMC
http://dx.doi.org/10.3389/fbinf.2024.1428539DOI Listing

Publication Analysis

Top Keywords

benzothiazole derivatives
12
potential inhibitors
12
derivatives potential
8
inhibitors trehalase
8
tre
8
molecular docking
8
tre tre
8
best hit
8
stability complex
8
complex tre
8

Similar Publications

Pifithrin-μ sensitizes mTOR-activated liver cancer to sorafenib treatment.

Cell Death Dis

January 2025

Department of Organ Transplantation and Hepatobiliary Surgery, Key Laboratory of Organ Transplantation of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.

TSC2, a suppressor of mTOR, is inactivated in up to 20% of HBV-associated liver cancer. This subtype of liver cancer is associated with aggressive behavior and early recurrence after hepatectomy. Being the first targeted regimen for advanced liver cancer, sorafenib has limited efficacy in HBV-positive patients.

View Article and Find Full Text PDF

An -heterocyclic carbene-catalyzed atroposelective [3 + 3] annulation of alkynyl acylazoliums with benzothiazole derivatives has been developed for the divergent synthesis of axially chiral triaryl 2-pyranones and fused 2-pyridones. The regioselectivity of this protocol depends on the structure of benzothiazoles with three different nucleophilic centers. The obtained axially chiral frameworks represent a new class of arylheterocycle atropisomers, which may be potentially useful in medicinal chemistry.

View Article and Find Full Text PDF

A fluorescent probe (NBC), constructed by benzothiazole-coumarin and naphthalimide derivatives, was developed for the detection of SO derivatives using the FRET (Förster Resonance Energy Transfer) strategy. NBC presented large Stokes shift (180 nm), fast response (2 min), high sensitivity (LOD: 45 nM) and an excellent linear relationship in response to SO derivatives. Moreover, NBC has been successfully applied to detect SO derivatives in food samples and living cells.

View Article and Find Full Text PDF

Recent Advances in the Development of Greener Methodologies for the Synthesis of Benzothiazoles.

Curr Top Med Chem

January 2025

School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata, West Bengal 700 032, India.

The benzothiazole ring system has been recognised with crucial pharmacophoric features being present among various approved drugs and clinical and pre-clinical candidates. The medicinal importance of this privileged scaffold stimulated the interest of synthetic medicinal/ organic chemists for the synthesis of its derivatives due to their diverse biological applications. In most of the reports in the literature, benzothiazoles were synthesized by cyclocondensation of 2- aminothiophenol with either carboxylic acid and its derivatives or aldehydes.

View Article and Find Full Text PDF

The reaction-based probe perylene diimide-hydroxyphenyl benzothiazole (PR) can be used for the detection and discrimination of HS, DTT and Cys in 20% HEPES buffer-DMSO and DMSO. The HS induced radical anion formation of PR in 20% HEPES buffer and thiolysis of the ether bond of PR in DMSO. However, the addition of DTT showed only a decrease in the absorbance intensity and Cys showed insignificant behaviour towards PR in DMSO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!