Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transition-metal-catalyzed hydroarylation of unactivated alkenes metal hydride hydrogen atom transfer (MHAT) is an attractive approach for the construction of C(sp)-C(sp) bonds. However, this kind of reaction focuses mainly on using reductive hydrosilane as a hydrogen donor. Here, a novel photoinduced Co/Ni-cocatalyzed Markovnikov hydroarylation of unactivated alkenes with aryl bromides using protons as a hydrogen source has been developed. This reaction represents the first example of photoinduced MHAT a reductive route intercepting an organometallic coreactant. The key to this transformation was that the Co-H species was generated from the protonation of the Co intermediate, and the formed Co-C(sp) intermediate interacted with the organometallic coreactant rather than reacting with nucleophiles, a method which has been well developed in photoinduced Co-catalyzed MHAT reactions. This reaction is characterized by its high catalytic efficiency, construction of quaternary carbons, simple reaction conditions and expansion of the reactive mode of Co-catalyzed MHAT reactions a reductive route. Moreover, this catalytic system could also be applied to complex substrates derived from glycosides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342154 | PMC |
http://dx.doi.org/10.1039/d4sc03355h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!