A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Single-nucleus multiome analysis of human cerebellum in Alzheimer's disease-related dementia. | LitMetric

AI Article Synopsis

  • The study examines the transcriptional and epigenomic changes in the human cerebellum related to Alzheimer's disease (AD) and AD-related dementias, evaluating 103,861 nuclei from AD cases and controls through advanced genome analysis techniques.
  • Researchers identified thousands of significant connections between gene expression and chromatin accessibility, focusing on key transcription factors RORA and ELF1 in specific cerebellar cell types, which correlate with disease-specific changes.
  • The analysis also highlighted two potentially crucial genes, SEZ6L2 and KANSL1, that may play a role in the pathology of AD, providing new insights into the genetic and epigenetic factors influencing neurological disorders.

Article Abstract

Although human cerebellum is known to be neuropathologically impaired in Alzheimer's disease (AD) and AD-related dementias (ADRD), the cell type-specific transcriptional and epigenomic changes that contribute to this pathology are not well understood. Here, we report single-nucleus multiome (snRNA-seq and snATAC-seq) analysis of 103,861 nuclei isolated from cerebellum from 9 human cases of AD/ADRD and 8 controls, and with frontal cortex of 6 AD donors for additional comparison. Using peak-to-gene linkage analysis, we identified 431,834 significant linkages between gene expression and cell subtype-specific chromatin accessibility regions enriched for candidate cis-regulatory elements (cCREs). These cCREs were associated with AD/ADRD-specific transcriptomic changes and disease-related gene regulatory networks, especially for RAR Related Orphan Receptor A (RORA) and E74 Like ETS Transcription Factor 1 (ELF1) in cerebellar Purkinje cells and granule cells, respectively. Trajectory analysis of granule cell populations further identified disease-relevant transcription factors, such as RORA, and their regulatory targets. Finally, we prioritized two likely causal genes, including Seizure Related 6 Homolog Like 2 (SEZ6L2) in Purkinje cells and KAT8 Regulatory NSL Complex Subunit 1 (KANSL1) in granule cells, through integrative analysis of cCREs derived from snATAC-seq, genome-wide AD/ADRD loci, and Hi-C looping data. This first cell subtype-specific regulatory landscape in the human cerebellum identified here offer novel genomic and epigenomic insights into the neuropathology and pathobiology of AD/ADRD and other neurological disorders if broadly applied.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343296PMC
http://dx.doi.org/10.21203/rs.3.rs-4871032/v1DOI Listing

Publication Analysis

Top Keywords

human cerebellum
12
single-nucleus multiome
8
cell subtype-specific
8
purkinje cells
8
granule cells
8
analysis
5
multiome analysis
4
human
4
analysis human
4
cerebellum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!