Recently, granular activated carbon (GAC) has shown its effectiveness as a cathode material for in situ ROS generation. Here, we present an electrochemically modified GAC cathode using electrode polarity reversal (PR) approach for enhanced HO decomposition via 2-electron oxygen reduction reaction (2e-ORR). The successful GAC modification using PR necessitates tuning of the operational parameters such as frequency, current, and time intervals between the PR cycles. This modification enhances the GAC hydrophilicity by increasing the density of surface oxygen functionalities. After optimization of the electrode polarity, using the 20 (No PR)-2 (PR) interval and 140 mA current intensity, the •OH concentration reaches 38.9 μM compared to the control (No PR) (28.14 μM). Subsequently, we evaluated the enhanced •OH generation for the removal of glyphosate, a persistent pesticide used as a model contaminant. The modified GAC using PR removed 67.6% of glyphosate compared to 40.6% by the unmodified GAC without PR, respectively. The findings from this study will advance the utilization of GAC for in situ ROS synthesis, which will have direct implications on increasing the effectiveness of electrochemical water treatment systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343566PMC
http://dx.doi.org/10.3390/catal14010052DOI Listing

Publication Analysis

Top Keywords

electrode polarity
12
granular activated
8
activated carbon
8
situ ros
8
modified gac
8
gac
7
engineering electrode
4
polarity enhancing
4
enhancing situ
4
situ generation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!