Developing power plant materials using the life cycle lens.

Philos Trans A Math Phys Eng Sci

Materials Division, UK Atomic Energy Authority, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK.

Published: October 2024

The Spherical Tokamak for Energy Production (STEP) environment will include magnetic, thermal, mechanical and environmental loads far greater than those seen in the Joint European Torus campaigns of the past decade or currently contemplated for ITER. Greater still are the neutron peak dose rates of 10 displacements per atom, per second, which in-vessel materials in STEP are anticipated to be exposed to. Reduced activation and high-fluence resilience therefore dominate the materials strategy to support the STEP Programme. The latter covers the full life cycle from downselected compositions and new microstructural developments to irradiation-informed modelling and end-of-life strategies. This article discusses how the materials downselection is oriented in plant power trade-off space, outlines the development of an advanced ferritic-martensitic structural steel, describes the 'Design by Fundamentals' mesoscale modelling approach and reports some of the waste mitigation routes intended to make STEP operations as sustainable as possible.This article is part of the theme issue 'Delivering Fusion Energy - The Spherical Tokamak for Energy Production (STEP)'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423679PMC
http://dx.doi.org/10.1098/rsta.2023.0409DOI Listing

Publication Analysis

Top Keywords

life cycle
8
spherical tokamak
8
tokamak energy
8
energy production
8
developing power
4
power plant
4
materials
4
plant materials
4
materials life
4
cycle lens
4

Similar Publications

Persistence is a strategy used by many viruses to evade eradication by the immune system, ensuring their permanence and transmission within the host and optimizing viral fitness. During persistence, viruses can trigger various phenomena, including target organ damage, mainly due to an inflammatory state induced by infection, as well as cell proliferation and/or immortalization. In addition to immune evasion and chronic inflammation, factors contributing to viral persistence include low-level viral replication, the accumulation of viral mutants, and, most importantly, maintenance of the viral genome and reliance on viral oncoprotein production.

View Article and Find Full Text PDF

Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV.

View Article and Find Full Text PDF

Rewriting Viral Fate: Epigenetic and Transcriptional Dynamics in KSHV Infection.

Viruses

November 2024

State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.

Kaposi's sarcoma-associated herpesvirus (KSHV), a γ-herpesvirus, is predominantly associated with Kaposi's sarcoma (KS) as well as two lymphoproliferative disorders: primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). Like other herpesviruses, KSHV employs two distinct life cycles: latency and lytic replication. To establish a lifelong persistent infection, KSHV has evolved various strategies to manipulate the epigenetic machinery of the host.

View Article and Find Full Text PDF

Hepatitis C Virus-Core Antigen: Implications in Diagnostic, Treatment Monitoring and Clinical Outcomes.

Viruses

November 2024

Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.

The hepatitis C virus (HCV) infection, a global health concern, can lead to chronic liver disease. The HCV core antigen (HCVcAg), a viral protein essential for replication, offers a cost-effective alternative to HCV RNA testing, particularly in resource-limited settings. This review explores the significance of HCVcAg, a key protein in the hepatitis C virus, examining its structure, function, and role in the viral life cycle.

View Article and Find Full Text PDF

A Zeolitic Imidazolate Framework-Based Antimicrobial Peptide Delivery System with Enhanced Anticancer Activity and Low Systemic Toxicity.

Pharmaceutics

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.

Background: The clinical efficacies of anticancer drugs are limited by non-selective toxic effects on healthy tissues and low bioavailability in tumor tissue. Therefore, the development of vehicles that can selectively deliver and release drugs at the tumor site is critical for further improvements in patient survival.

Methods: We prepared a CEC nano-drug delivery system, CEC@ZIF-8, with a zeolite imidazole framework-8 (ZIF-8) as a carrier, which can achieve the response of folate receptor (FR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!