Background: Dendrobium officinale Kimura et Migo (D. officinale) is parasitic on rocks or plants with very few mineral elements that can be absorbed directly, so its growth and development are affected by nutritional deficiencies. Previous studies found that phosphorus deficiency promotes polysaccharides accumulation in D. officinale, the expression of DoCSLA6 (glucomannan synthase gene) was positively correlated with polysaccharide synthesis. However, the molecular mechanism by which the low phosphorus environment affects polysaccharide accumulation remains unclear.

Results: We found that DoSPX1 can reduce phosphate accumulation in plants and promote the expression of PSIs genes, thereby enhancing plant tolerance to low phosphorus environments.Y1H and EMSA experimental show that DoMYB37 can bind the promoter of DoCSLA6. DoSPX1 interact with DoMYB37 transiently overexpressed DoSPX1 and DoMYB37 in D. officinale protocorm-like bodies, decreased the Pi content, while increased the expression of DoCSLA6.

Conclusions: The signaling pathway of DoSPX1-DoMYB37-DoCSLA6 was revealed. This provides a theoretical basis for the accumulation of polysaccharide content in D. officinale under phosphorus starvation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346060PMC
http://dx.doi.org/10.1186/s12870-024-05512-8DOI Listing

Publication Analysis

Top Keywords

dospx1 domyb37
8
expression docsla6
8
phosphorus starvation
8
low phosphorus
8
dospx1
4
domyb37 regulate
4
expression
4
regulate expression
4
docsla6 dendrobium
4
dendrobium officinale during
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!