Inhibin subunit beta B (INHBB): an emerging role in tumor progression.

J Physiol Biochem

Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Tongzipo Road 172, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China.

Published: November 2024

The gene inhibin subunit beta B (INHBB) encodes the inhibin βB subunit, which is involved in forming protein members of the transforming growth factor-β (TGF-β) superfamily. The TGF-β superfamily is extensively involved in cell proliferation, differentiation, adhesion, movement, metabolism, communication, and death. Activins and inhibins, which belong to the TGF-β superfamily, were first discovered in ovarian follicular fluid. They were initially described as regulators of pituitary follicle-stimulating hormone (FSH) secretion both in vivo and in vitro. Later studies found that INHBB is expressed not only in reproductive organs such as the ovary, uterus, and testis but also in numerous other organs, including the brain, spinal cord, liver, kidneys, and adrenal glands. This wide distribution implies its involvement in the normal physiological functions of various organs; however, the mechanisms underlying these functions have not yet been fully elucidated. Recent studies suggest that INHBB plays a significant, yet complex role in tumorigenesis. It appears to have dual effects, promoting tumor progression in some contexts while inhibiting it in others, although these roles are not yet fully understood. In this paper, we review the different expression patterns, functions, and mechanisms of INHBB in normal and tumor tissues to illustrate the research prospects of INHBB in tumor progression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13105-024-01041-yDOI Listing

Publication Analysis

Top Keywords

tumor progression
12
tgf-β superfamily
12
inhibin subunit
8
subunit beta
8
beta inhbb
8
studies inhbb
8
inhbb
6
inhbb emerging
4
emerging role
4
tumor
4

Similar Publications

Mir-615-5p inhibits cervical cancer progression by targeting TMIGD2.

Hereditas

January 2025

Obstetrics and Gynecology Medical Centre, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, No.105, Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, China.

Background: Cervical cancer (CC) is a prevalent gynecological malignancy, contributing to a substantial number of fatalities among women. MicroRNAs (miRNAs) have emerged as promising biomarkers with significant potential for the early detection and prognosis of CC.

Objective: This study aimed to explore the clinical significance and biological role of miR-615-5p in CC, with the goal of identifying novel biomarkers for this disease.

View Article and Find Full Text PDF

Background: The most common malignant type of kidney cancer is clear cell renal cell carcinoma (ccRCC). The expression levels of hyaluronan-mediated motility receptor (HMMR) in many tumor types are significantly elevated. HMMR is closely associated with tumor-related progression, treatment resistance, and poor prognosis, and has yet to be fully investigated in terms of its expression patterns and molecular mechanisms of action in ccRCC.

View Article and Find Full Text PDF

SMAC-armed oncolytic virotherapy enhances the anticancer activity of PD1 blockade by modulating PANoptosis.

Biomark Res

January 2025

Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA.

Background: Oncolytic viruses (OVs) are increasingly recognized as promising tools for cancer therapy, as they selectively infect and destroy tumor cells while leaving healthy cells unharmed. Despite considerable progress, the limited therapeutic efficacy of OV-based virotherapy continues to be a significant challenge in cancer treatment.

Methods: The SMAC/DIABLO gene was inserted into the genome of vesicular stomatitis virus (VSV) to generate VSV-S.

View Article and Find Full Text PDF

Background: Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving treatment strategies.

Methods: We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis.

View Article and Find Full Text PDF

Metabolic reprogramming within the tumor microenvironment (TME) is a hallmark of cancer and a crucial determinant of tumor progression. Research indicates that various metabolic regulators form a metabolic network in the TME and interact with immune cells, coordinating the tumor immune response. Metabolic dysregulation creates an immunosuppressive TME, impairing the antitumor immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!