Stroke causes death of brain tissue leading to long-term deficits. Behavioral evidence from neurorehabilitative therapies suggest learning-induced neuroplasticity can lead to beneficial outcomes. However, molecular and cellular mechanisms that link learning and stroke recovery are unknown. We show that in a mouse model of stroke, which exhibits enhanced recovery of function due to genetic perturbations of learning and memory genes, animals display activity-dependent transcriptional programs that are normally active during formation or storage of new memories. The expression of neuronal activity-dependent genes are predictive of recovery and occupy a molecular latent space unique to motor recovery. With motor recovery, networks of activity-dependent genes are co-expressed with their transcription factor targets forming gene regulatory networks that support activity-dependent transcription, that are normally diminished after stroke. Neuronal activity-dependent changes at the circuit level are influenced by interactions with microglia. At the molecular level, we show that enrichment of activity-dependent programs in neurons lead to transcriptional changes in microglia where they differentially interact to support intercellular signaling pathways for axon guidance, growth and synaptogenesis. Together, these studies identify activity-dependent transcriptional programs as a fundamental mechanism for neural repair post-stroke.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345429 | PMC |
http://dx.doi.org/10.1038/s42003-024-06723-3 | DOI Listing |
Neuronal excitation-transcription (E-T) coupling pathways can be initiated by local increases of Ca concentrations within a nanodomain close to the L-type voltage-gated Ca channel (LTCC). However, molecular mechanisms controlling LTCC organization within the plasma membrane that help creation these localized signaling domains remain poorly characterized. Here, we report that neuronal depolarization increases Ca 1.
View Article and Find Full Text PDFSubcell Biochem
January 2025
Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
In animals, memory formation and recall are essential for their survival and for adaptations to a complex and often dynamically changing environment. During memory formation, experiences prompt the activation of a selected and sparse population of cells (engram cells) that undergo persistent physical and/or chemical changes allowing long-term memory formation, which can last for decades. Over the past few decades, important progress has been made on elucidating signaling mechanisms by which synaptic transmission leads to the induction of activity-dependent gene regulation programs during the different phases of learning (acquisition, consolidation, and recall).
View Article and Find Full Text PDFRen Fail
December 2025
Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
FASEB J
December 2024
Laboratory of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan.
SUMOylation, the modification of proteins with a small ubiquitin-like modifier (SUMO), is known to regulate various cellular events, including cell division. This process is dynamic, with its status depending on the balance between SUMOylation and deSUMOylation. While the regulation of cell division by sentrin-specific protease (SENP) family proteins through deSUMOylation has been investigated, the role of another deSUMOylase, deSUMOylating isopeptidase 1 (DESI1), remains unknown.
View Article and Find Full Text PDFJ Anim Sci Biotechnol
December 2024
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
Background: Oxidative stress (OS) is involved in low female fertility by altering multi-omics such as the transcriptome, miRome, and lncRNome in follicular cells and follicular fluid. However, the mechanism by which OS affects multi-omics dynamics remains largely unknown. Here, we report that OS induces lncRNome dynamics in sow granulosa cells (sGCs), which is partially dependent on the transcription factor activity of its effector, FoxO1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!