The environmental pollution caused by heavy metal ions has become a serious global environmental issue. Heavy metal contaminants released from industrial effluents, agricultural runoff, and human activities, can enter into water resources. The toxicity of these heavy metal ions even at trace concentrations presents a substantial hazard to both aquatic systems and human well-being. The membrane separation processes have become more promising sustainable techniques for the separation of metal ions from the effluent. The research efforts have been concentrated on improving the synthesis of membranes and membrane materials to facilitate the sustainable separation of heavy metals. The application of chitosan in the fabrication of membranes is getting more attention. Chitosan, a natural polysaccharide derived from chitin, is abundant in nature and has active hydroxyl and amino groups suitable for the separation of heavy metal ions. It exhibits excellent chelating tendency, biocompatibility, and biodegradability. The functionalization of chitosan to improve its mechanical strength, chemical stability, and antifouling properties has become an ongoing area of research. This review examines the synthesis and efficient applications of chitosan blended membranes. The review concludes by outlining the current challenges and proposing future research prospects to enhance the applicability of chitosan-blended membranes in environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.134996DOI Listing

Publication Analysis

Top Keywords

heavy metal
20
metal ions
16
chitosan-blended membranes
8
separation heavy
8
heavy
6
metal
6
separation
5
membranes heavy
4
metal removal
4
removal aqueous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!