AI Article Synopsis

  • This study analyzed the presence and impact of microplastics (MPs) in seven fish species from Dhaka's fish markets, revealing that the kidneys accumulated the highest levels of MPs, especially in Glossogobius giuris due to its feeding habits.
  • Fish from Uttara showed a greater concentration of MPs compared to those from Jatrabari, with fiber-shaped MPs being the most common form found.
  • An experiment demonstrated that larger PVC microplastics negatively affected fish growth and caused more significant physical deformities, while also confirming that larger MPs were more likely to bioaccumulate in the fish compared to smaller ones.

Article Abstract

Microplastics (MPs), a growing environmental concern with potential ecotoxicological risks, are ubiquitous in aquatic environment. This study investigated the organ-specific distribution and variation of MPs in commercially caught fishes (7 species, 140 individuals) collected from Dhaka's two main fish distribution hubs (Uttara and Jatrabari). Additionally, the impact of different-sized MPs on fish growth (Anabas testudineus) was examined in a control experiment. Results revealed that kidneys of market fish bioaccumulated the highest concentration of MPs (average, 59.1 MPs/g), followed by liver (24.6 MPs/g) and intestine (18.6 MPs/g). On average, fish from Uttara had a higher MPs concentration (36 MPs/g) compared to Jatrabari (25 MPs/g). Among fish species, Glossogobius giuris showed the highest MPs bioaccumulation due to its feeding habits and morphology. Fiber-shaped MPs were most prevalent in all fishes (79-93%) except Glossogobius giuris (fragments, 51%). Fourier-transform infrared spectroscopy (FTIR) analysis identified 19 different polymer types, with high density polyethylene (HDPE), ethylene vinyl acetate (EVA) and polyamide (PA) being commonly found in all organs. The experimental study confirmed that large-sized PVC MPs (1.18 mm-300 μm) had a greater negative impact on fish growth (length) and caused more physical deformities (particularly intestinal injuries) compared to small-sized PVC MPs (150 μm-75 μm). Moreover, fish exposed to larger diameter MPs experienced highest physical weight and depth loss among exposed groups. Large-sized PVC MPs bioaccumulated highest in fish compared to small-sized PVC MPs. Similar to market fish, kidney in the experimental fish had the highest MPs bioaccumulation (6.5 MPs/g), followed by liver (5.2 MPs/g) and intestine (4.8 MPs/g), with a dominance of fibers despite the presence of high concentration of fragments in the food source. Statistical analysis also supported a clear correlation between increasing MPs size and adverse effects on fish growth and health. Urgent action is needed to curb microplastic pollution and protect ecosystems and human health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.124807DOI Listing

Publication Analysis

Top Keywords

pvc mps
16
mps
14
fish
12
market fish
12
fish growth
12
bioaccumulated highest
8
mps/g
8
mps/g liver
8
mps/g intestine
8
glossogobius giuris
8

Similar Publications

Irradiation and DOM mediate lead release from polyvinyl chloride microplastics in natural surface water.

J Hazard Mater

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008,  PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China. Electronic address:

Polyvinyl chloride (PVC) is a widely used plastic, but the potential risk of heavy metal additive release from PVC microplastics (MPs) has not been fully explored. This study evaluates the release of lead (Pb) from recycled PVC MPs under natural conditions. The released Pb concentration in the dark was 1079.

View Article and Find Full Text PDF

Microplastics and Dechlorane Plus co-exposure amplifies their impacts on soybean plant.

Environ Pollut

January 2025

Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China. Electronic address:

The co-existence of microplastics (MPs) and organic pollutants on agricultural ecosystems pose potential implications for both food safety and environmental integrity. The combined effects of MPs with Dechlorane Plus (DP), a newly listed banned flame retardant, remain unknown. This study explores the biological responses of soybean plants to exposure from polyethylene (PE) and polyvinyl chloride (PVC) MPs and DP.

View Article and Find Full Text PDF

Mechanism of microplastics in the reduction of cadmium toxicity in tomato.

Ecotoxicol Environ Saf

January 2025

College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China. Electronic address:

Soil pollution by microplastics (MPs) and cadmium (Cd) poses significant threats to agricultural production, yet their combined toxicity and underlying mechanisms remain poorly understood. Here, we examined the effects of three types of MPs-polyethylene (PE), polyvinyl chloride (PVC) and polypropylene (PP)-with particle sizes of 150 μm and 10 μm, in combination with Cd stress (5 mg/kg) on tomato (Solanum lycopersicum L.) growth.

View Article and Find Full Text PDF

Microplastics accelerate nitrification, shape the microbial community, and alter antibiotic resistance during the nitrifying process.

Sci Total Environ

December 2024

College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China. Electronic address:

Microplastics (MPs) and antibiotic resistance genes (ARGs) are both emerging pollutants that are frequently detected in wastewater treatment plants. In this study, the effects of various MPs, including polyethylene (PE), polyvinyl chloride (PVC), and biodegradable polylactic acid (PLA), on nitrification performance, dominant microbial communities, and antibiotic resistance during nitrification were investigated. The results revealed that the addition of MPs increased the specific ammonia oxidation rate and specific nitrate production rate by 15.

View Article and Find Full Text PDF

Microplastics as adsorbent for Pb and Cd: A comparative study of polypropylene, polyvinyl chloride, high-density polyethylene, and low-density polyethylene.

J Contam Hydrol

December 2024

Division of Earth and Environmental System Sciences-Major of Environmental Geosciences, Pukyong National University, Busan 48513, South Korea; Wible Co Ltd, Pukyong National University, 365 Sinseon-ro, Nam-gu, Busan 48547, South Korea. Electronic address:

Microplastics (MPs) in aquatic environments adsorb heavy metals, thereby posing potential environmental risks. However, further research is needed to elucidate the adsorption behavior of different types of MPs for various heavy metals. The aim of this study was to characterize four types of MPs: polypropylene (PP), polyvinyl chloride (PVC), high-density polyethylene (HDPE), and low-density polyethylene (LDPE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!