A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimizing carbon sources on performance for enhanced efficacy in single-stage aerobic simultaneous nitrogen and phosphorus removal via biofloc technology. | LitMetric

Optimizing carbon sources on performance for enhanced efficacy in single-stage aerobic simultaneous nitrogen and phosphorus removal via biofloc technology.

Bioresour Technol

Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China. Electronic address:

Published: November 2024

Bioflocs can efficiently achieve simultaneous nitrate and phosphate removal through a single-stage aerobic process, provided they are continuously supplemented with an organic carbon source. This study investigated the effects of different carbon sources on this process. Results revealed that phosphate removal rate in the glucose group was 0.61 ± 0.02 mg/L/h, significantly higher than those in the acetate (0.28 ± 0.01 mg/L/h) and propionate (0.29 ± 0.03 mg/L/h) groups (p < 0.05). However, the three groups observed no significant differences in nitrate removal rates (p > 0.05). The superior performance of the glucose group in simultaneous nitrogen and phosphorus removal is likely due to the higher biomass synthesis. In contrast, nitrate removal in the acetate and propionate groups was primarily driven by denitrification, resulting in lower sludge production and reduced phosphate uptake. For practical application of bioflocs in simultaneous nitrogen and phosphorus removal, glucose is recommended as the optimal carbon source.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131347DOI Listing

Publication Analysis

Top Keywords

simultaneous nitrogen
12
nitrogen phosphorus
12
phosphorus removal
12
carbon sources
8
single-stage aerobic
8
phosphate removal
8
carbon source
8
glucose group
8
removal
6
optimizing carbon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!