A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Geranylgeraniol: Bio-based platform for teprenone, menaquinone-4, and α-tocotrienol synthesis. | LitMetric

Geranylgeraniol: Bio-based platform for teprenone, menaquinone-4, and α-tocotrienol synthesis.

Bioresour Technol

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China; Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China; Wuhan Hesheng Technology Co., Ltd, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China. Electronic address:

Published: November 2024

AI Article Synopsis

  • * This study introduces a new strategy that uses a chemosynthesis-like method to emphasize the value of biobased intermediates, specifically focusing on geranylgeraniol (GGOH) production.
  • * Through advanced metabolic engineering and a novel yeast strain, researchers achieved significant GGOH production, which led to the semi-synthesis of several pharmaceuticals, suggesting new possibilities for industrial production improvements and innovations.

Article Abstract

By utilizing the conformational selectivity of biosynthesis and the flexibility of chemical synthesis, researchers have formulated metabolic engineering-based semi-synthetic approaches that initiate with the final product's structure and identify key biosynthesis intermediates. Nonetheless, these tailored semi-synthetic routes focused on end-products, neglecting the possibility of biobased intermediates as a platform for derivatization. To address this challenge, this studyproposed a novel strategy resembling chemosynthesis-style divergent exploration to amplify the significance of biobased intermediates, in the case of geranylgeraniol (GGOH). Using the novel bifunctional terpene synthase PTTC066 and systematic metabolic engineering modifications, the engineered yeast straindemonstrated high GGOH production levels (3.32 g/L, 0.039 g/L/h). This platformenabled the semi-synthesis of various pharmaceuticals, including the anti-ulcer drug teprenone, the osteoporosis treatment drug menaquinone-4, and introduced a novel route for synthesizingα-tocotrienol. This study offers a fresh outlook on semi-synthetic approaches, opening avenues for improvements, substitutions, and innovations in industrial production processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131349DOI Listing

Publication Analysis

Top Keywords

semi-synthetic approaches
8
biobased intermediates
8
geranylgeraniol bio-based
4
bio-based platform
4
platform teprenone
4
teprenone menaquinone-4
4
menaquinone-4 α-tocotrienol
4
α-tocotrienol synthesis
4
synthesis utilizing
4
utilizing conformational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!