Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Wastewater-based epidemiology (WBE) is a valuable complement to clinical monitoring, allowing for effective surveillance of viral infections in populations, and tracking the presence and the epidemiological dynamics of various infectious pathogens in communities. However, virus loads are usually low-abundant in wastewater, and current virus concentration methods for WBE are laborious and time-consuming with low recovery efficiency. To address these challenges, we have developed a magnetic bead-based semi-automated method involving extraction and purification to directly concentrate viral nucleic acids from sewage within 55 min. Prior to concentration, 0.5 % LDS was introduced to pretreat wastewater to inactivate viruses and release viral nucleic acids from both liquid and solid fractions to improve recovery. Under optimal conditions, the concentration method combined with reverse transcription-quantitative polymerase chain reaction (RT-qPCR) can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA added exogenously in wastewater as low as 4.9 copies/mL within 2.5 h, with an average recovery rate exceeding 80 %. Testing real sewages proved the applicability of the method to detect multiple viruses in different sewages. Additionally, variants of SARS-CoV-2 were successfully identified by multiplex amplicon sequencing in two samples. In conclusion, the new method could provide a much more efficient way for WBE of pathogenic viruses in various sewages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.175742 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!