Background: Recent interest in how neural oscillations reflect the flow of information through the brain has led to partitioning electroencephalography (EEG) recordings into periodic (i.e., oscillatory) and aperiodic (i.e., non-oscillatory) components. While both contribute to conventional measures of power within the frequencies that compose EEG recordings, the periodic aspect characterizes true oscillations, the speed of which is thought to be critical to efficient functioning of neural systems. Given evidence of EEG power abnormalities in schizophrenia (SCZ), we sought to determine whether the periodic aspect of EEG was aberrant in people with SCZ and could serve as a general measure of brain efficiency.
Methods: Resting-state EEGs were gathered from 104 participants with SCZ and 105 healthy control participants. We used the FOOOF toolbox to remove aperiodic neural activity. We computed the cross-correlation between power spectra for individual participants and the mean power spectrum for all participants to quantify the relative speed of neural oscillations.
Results: Periodic activity in SCZ was shifted toward lower frequencies than control participants during eyes-closed rest. On average, participants with SCZ had a 0.55-Hz shift toward oscillatory slowing across the frequency spectrum that predicted worse perceptual reasoning.
Conclusions: Slowed periodic activity at rest is evident in SCZ and may represent inefficient functioning of neural circuits as reflected in worse perceptual reasoning. A slower pace of neural oscillations may be a general limitation on the transmission of information within the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bpsc.2024.08.007 | DOI Listing |
J Neurosci
January 2025
Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Germany
Recordings from Parkinson's disease (PD) patients typically show strong beta-band oscillations (13-35Hz), which can be modulated by deep brain stimulation (DBS). While high-frequency DBS (>100Hz) ameliorates motor symptoms and reduces beta activity in basal ganglia and motor cortex, the effects of low-frequency DBS (<30Hz) are less clear. Clarifying these effects is relevant for the debate about the role of beta oscillations in motor slowing, which might be causal or epiphenomenal.
View Article and Find Full Text PDFNeuropsychologia
January 2025
Department of Criminology & Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; Department of Neuroscience and Biomedical Engineering, Aalto University, Finland 00076. Electronic address:
While decreasing negative attitudes against outgroups are often reported by individuals themselves, biased behaviour prevails. This gap between words and actions may stem from unobtrusive mental processes that could be uncovered by using neuroimaging in addition to self-reports. In this study we investigated whether adding neuroimaging to a traditional intergroup bias measure could detect intersubject differences in intergroup bias processes in a societal context where opposing discrimination is normative.
View Article and Find Full Text PDFProg Neurobiol
January 2025
Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, the Netherlands. Electronic address:
It is well established that when we hold more content in working memory, we are slower to act upon part of that content when it becomes relevant for behavior. Here, we asked whether this load-related slowing is due to slower access to the sensory representations held in working memory (as predicted by serial working-memory search), or by a reduced preparedness to act upon those sensory representations once accessed. To address this, we designed a visual-motor working-memory task in which participants memorized the orientation of two or four colored bars, of which one was cued for reproduction.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
January 2025
School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China; Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan. Electronic address:
Background: The detection of abnormal brain activity plays an important role in the early diagnosis and treatment of major depressive disorder (MDD). Recent studies have shown that the decomposition of the electroencephalography (EEG) spectrum into periodic and aperiodic components is useful for identifying the drivers of electrophysiologic abnormalities and avoiding individual differences.
Methods: This study aimed to elucidate the pathologic changes in individualized periodic and aperiodic activities and their relationships with the symptoms of MDD.
Pharmacol Res
January 2025
Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China. Electronic address:
General anesthesia is administered to millions of individuals each year, however, the precise mechanism by which it induces unconsciousness remains unclear. While some theories suggest that anesthesia shares similarities with natural sleep, targeting sleep-promoting areas and inhibiting arousal nuclei, recent research indicates a more complex process. Emerging evidence highlights the critical role of corticothalamocortical circuits, which are involved in higher cognitive functions, in controlling arousal states and modulating transitions between different conscious states during anesthesia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!