Multi-omics analysis delineates resistance mechanisms associated with BRAF inhibition in melanoma cells.

Exp Cell Res

Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia; Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia. Electronic address:

Published: September 2024

Mutant BRAF is a critical oncogenic driver in melanoma, making it an attractive therapeutic target. However, the success of targeted therapy using BRAF inhibitors vemurafenib and dabrafenib has been limited due to development of resistance, restricting their clinical efficacy. A prior knowledge of resistance mechanisms to BRAFi or any cancer drug can lead to development of drugs that overcome resistance thus improving clinical outcomes. In vitro cellular models are powerful systems that can be utilized to mimic and study resistance mechanisms. In this study, we employed a multi-omics approach to characterize a panel of BRAF mutant melanoma cell lines to develop and systematically characterize BRAFi persister and resistant cells using exome sequencing, proteomics and phosphoproteomics. Our datasets revealed frequently observed intrinsic and acquired, genetic and non-genetic mechanisms of BRAFi resistance that have been studied in patients who developed resistance. In addition, we identified proteins that can be potentially targeted to overcome BRAFi resistance. Overall, we demonstrate that in vitro systems can be utilized not only to predict resistance mechanisms but also to identify putative therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2024.114215DOI Listing

Publication Analysis

Top Keywords

resistance mechanisms
16
resistance
9
mechanisms brafi
8
systems utilized
8
brafi resistance
8
mechanisms
5
multi-omics analysis
4
analysis delineates
4
delineates resistance
4
mechanisms associated
4

Similar Publications

Emerging Trends in Neuroblastoma Diagnosis, Therapeutics, and Research.

Mol Neurobiol

January 2025

Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India.

This review explores the current understanding and recent advancements in neuroblastoma, one of the most common extracranial solid pediatric cancers, accounting for ~ 15% of childhood cancer-related mortality. The hallmarks of NBL, including angiogenesis, metastasis, apoptosis resistance, cell cycle dysregulation, drug resistance, and responses to hypoxia and ROS, underscore its complex biology. The tumor microenvironment's significance in disease progression is acknowledged in this study, along with the pivotal role of cancer stem cells in sustaining tumor growth and heterogeneity.

View Article and Find Full Text PDF

Aberrant expression of grainyhead-like transcription factor 3 (GRHL3) has been extensively reported in the development and progression of several squamous cell carcinomas, such as cutaneous, head and neck, and esophageal squamous cell carcinoma. However, the clinical significance and biological roles of GRHL3 in lung squamous cell (LUSC) carcinoma are largely unclear. Herein, we report that GRHL3 was significantly upregulated in lung squamous epithelium of LUSC tissues, bronchiole, and bronchus.

View Article and Find Full Text PDF

Cryptobiosis is a state where organisms lose nearly all their internal water and enter anhydrobiosis under extreme environmental stress. The dispersal third-stage juveniles (pre-dauer juveniles, ) of Bursaphelenchus xylophilus can enter cryptobiosis through dehydration and revive upon rehydration when environmental conditions improve. Osmotic regulation is crucial for their survival in this process.

View Article and Find Full Text PDF

Obesity is a global health concern that promotes chronic low-grade inflammation, leading to insulin resistance, a key factor in many metabolic diseases. Angiotensin 1-7 (Ang 1-7), a component of the renin-angiotensin system (RAS), exhibits anti-inflammatory effects in obesity and related disorders, though its mechanisms remain unclear. In this study, we examined the effect of Ang 1-7 on inflammation of white adipose tissue (WAT) in dietary-induced obese mice.

View Article and Find Full Text PDF

The emergence of multidrug-resistant (MDR) pathogens, coupled with the limited effectiveness of existing antibiotics in eradicating biofilms, presents a significant threat to global health care. This critical situation underscores the urgent need for the discovery and development of antimicrobial agents. Recently, peptide-derived antimicrobial nanomaterials have shown promise in combating such infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!