Human genetic studies show that loss of function mutations in 17-Beta hydroxysteroid dehydrogenase (HSD17β13) are associated with protection from non-alcoholic steatohepatitis (NASH). As a result, therapies that reduce HSD17β13 are being pursued for the treatment of NASH. However, inconsistent effects on steatosis, inflammation, and fibrosis pathogenesis have been reported in murine Hsd17b13 knockdown or knockout models. To clarify whether murine Hsd17b13 loss regulates liver damage and fibrosis, we characterized Hsd17b13 knockout mice subjected to pro-NASH diets or pro-inflammatory chemical-induced liver injury. There were no effects of Hsd17b13 loss on liver injury, inflammation, fibrosis, or lipids after 28 weeks on the Gubra-Amylin NASH (GAN) diet or 12 weeks on a 45% choline-deficient high-fat diet (CDAHFD). However, AAV-mediated re-expression of murine Hsd17b13 in KO mice increased liver macrophage abundance in both sexes fed the 45% CDAHFD. In contrast, there was a modest reduction in liver fibrosis, but not lipids or inflammation within Hsd17b13 null female, but not male, mice after 12 weeks of a 60% CDAHFD compared to WT littermates. Fibrosis and the abundance of liver macrophages were increased in Hsd17b13 KO females upon adenoviral re-expression of mouse HSD17β13, but this was not reflected in inflammatory markers. Additionally, we found minimal differences in liver injury, lipids, or inflammatory and fibrotic markers 48 h after acute CCl exposure. In summary, murine Hsd17b13 loss has modest diet- and sex-specific effects on liver fibrosis which contrasts with human genetic studies. This suggests a disconnect between the biological function of HSD17β13 in mice and humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440797PMC
http://dx.doi.org/10.1016/j.jlr.2024.100634DOI Listing

Publication Analysis

Top Keywords

murine hsd17b13
16
hsd17b13 loss
12
liver injury
12
liver
9
human genetic
8
genetic studies
8
inflammation fibrosis
8
hsd17b13
8
fibrosis lipids
8
liver fibrosis
8

Similar Publications

Lipid droplets (LDs) serve as crucial hubs for lipid trafficking and metabolic regulation through their numerous interactions with various organelles. While the interplay between LDs and the Golgi apparatus has been recognized, their roles and underlying mechanisms remain poorly understood. Here, we reveal the role of Ras-related protein Rab-2A (Rab2A) in mediating LD-Golgi interactions, thereby contributing to very-low-density lipoprotein (VLDL) lipidation and secretion in hepatocytes.

View Article and Find Full Text PDF

Human genetic studies show that loss of function mutations in 17-Beta hydroxysteroid dehydrogenase (HSD17β13) are associated with protection from non-alcoholic steatohepatitis (NASH). As a result, therapies that reduce HSD17β13 are being pursued for the treatment of NASH. However, inconsistent effects on steatosis, inflammation, and fibrosis pathogenesis have been reported in murine Hsd17b13 knockdown or knockout models.

View Article and Find Full Text PDF

Expression and localization of HSD17B13 along mouse urinary tract.

Am J Physiol Renal Physiol

July 2024

Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, People's Republic of China.

17β-Hydroxysteroid dehydrogenase-13 (HSD17B13), a newly identified lipid droplet-associated protein, plays an important role in the development of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Emerging evidence demonstrates that NASH is an independent risk factor for chronic kidney disease, which is frequently accompanied by renal lipid accumulation. In addition, the HSD17B13 rs72613567 variant is associated with lower levels of albuminuria in patients with biopsy-proven NAFLD.

View Article and Find Full Text PDF

HSD17B13 liquid-liquid phase separation promotes leukocyte adhesion in chronic liver inflammation.

J Mol Cell Biol

November 2024

State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.

The rs72613567:TA polymorphism in 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) has been found to reduce the progression from steatosis to metabolic dysfunction-associated steatohepatitis (MASH). In this study, we sought to define the pathogenic role of HSD17B13 in triggering liver inflammation. Here, we demonstrate that HSD17B13 forms liquid-liquid phase separation (LLPS) around lipid droplets in the livers of MASH patients.

View Article and Find Full Text PDF

Evaluation of antisense oligonucleotide therapy targeting Hsd17b13 in a fibrosis mice model.

J Lipid Res

March 2024

Bristol-Myers Squibb Company, Lawrence Township, NJ, USA. Electronic address:

Human genetic evidence suggests a protective role of loss-of-function variants in 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) for liver fibrotic diseases. Although there is limited preclinical experimental data on Hsd17b13 antisense oligonucleotide (ASO) or siRNA in a fibrosis model, several ASO and siRNA approaches are being tested clinically as potential therapies for nonalcoholic steatohepatitis (NASH). The aim of this study was to assess the therapeutic potential of Hsd17b13 ASO in a preclinical advanced NASH-like hepatic fibrosis in vivo model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!