Ubiquity and ecological risks of conjugated steroids cannot be overlooked: First evidence from estuarine sediments.

Mar Pollut Bull

Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.

Published: October 2024

Steroids, renowned for endocrine-disrupting capabilities, have garnered significant research interest, predominantly centered on their parent forms. This study was the first to explore the composition, spatiotemporal characteristics, sources, mass inventories, and ecological risks of steroids in free and conjugated forms in estuarine sediments. Seventeen steroids were identified in sediments with the total levels of 1.3-4.3 ng/g. Most natural steroids and metabolites existed in free forms, while synthetic ones predominantly stored in conjugates. Environmental factors exerted limited impacts on steroid distribution. Raw domestic wastewater, drug consumption, and mariculture may be leading steroid sources in estuarine sediments, with total mean mass inventories of 177-219 μg/m. The predominant contributors to the ecological risk were cortisol, prednisolone, 20α-dihydroprogesterone, 20β-dihydroprogesterone, and progesterone. This research gives the first insight into the understanding of conjugated steroids in the marine environment, and advocates for more studies on the fate and ecotoxicology of conjugated steroids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2024.116879DOI Listing

Publication Analysis

Top Keywords

conjugated steroids
12
estuarine sediments
12
ecological risks
8
mass inventories
8
sediments total
8
steroids
7
ubiquity ecological
4
conjugated
4
risks conjugated
4
steroids overlooked
4

Similar Publications

The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid -acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy.

View Article and Find Full Text PDF

Homopregnane-type ferrocene-steroid conjugates exhibit immunomodulatory activity.

Bioorg Chem

January 2025

Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia. Electronic address:

Article Synopsis
  • Researchers developed new compounds by linking ferrocene to natural steroid structures to enhance their biological activity.
  • The team created 8 new conjugates from various progestogens and characterized them using advanced techniques like NMR and UV-Vis.
  • Although the conjugates weren't highly toxic to rat spleen cells, they elicited diverse immune responses, likely due to the presence of the ferrocene component.
View Article and Find Full Text PDF

Enhanced expression of Cyp17a1 and production of DHEA-S in the liver of late-pregnant rats.

Gen Comp Endocrinol

January 2025

Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.

Cytochrome P450 17A1 (CYP17A1) catalyzes two enzymatic reactions in the biosynthesis of dehydroepiandrosterone (DHEA) from pregnenolone. In pregnant humans, the adrenal gland is responsible for DHEA biosynthesis, which is then sulfated by SULT2A1 and released into the bloodstream. This sulfated DHEA is subsequently taken up by the placenta and deconjugated to serve as a precursor for estrogen biosynthesis.

View Article and Find Full Text PDF

Objectives: Urinary steroid profiling after hydrolysis of conjugates is an emerging tool to differentiate aggressive adrenocortical carcinomas (ACC) from benign adrenocortical adenomas (ACA). However, the shortcomings of deconjugation are the lack of standardized and fully validated hydrolysis protocols and the loss of information about the originally conjugated form of the steroids. This study aimed to evaluate the quality of the deconjugation process and investigate novel diagnostic biomarkers in urine without enzymatic hydrolysis.

View Article and Find Full Text PDF

Introduction: Non-steroidal anti-inflammatory drugs are associated with severe gastrointestinal irritation upon prolonged use, largely due to their carboxylic (-- COOH) functional group.

Aim: To address this issue, we aimed to synthesize diclofenac conjugates with glucosamine and chitosan, converting the -COOH group into an amide (-CONH-) via a mechanochemical, environmentally friendly method.

Method: In this study, diclofenac acid was first converted to its acid chloride using thionyl chloride under mechanochemical conditions and subsequently reacted with glucosamine base and chitosan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!