A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Noninflammatory 97-amino acid High Mobility Group Box 1 derived polypeptide disrupts and prevents diverse biofilms. | LitMetric

Noninflammatory 97-amino acid High Mobility Group Box 1 derived polypeptide disrupts and prevents diverse biofilms.

EBioMedicine

Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. Electronic address:

Published: September 2024

Background: Bacterial biofilm communities are embedded in a protective extracellular matrix comprised of various components, with its' integrity largely owed to a 3-dimensional lattice of extracellular DNA (eDNA) interconnected by Holliday Junction (HJ)-like structures and stabilised by the ubiquitous eubacterial DNABII family of DNA-binding architectural proteins. We recently showed that the host innate immune effector High Mobility Group Box 1 (HMGB1) protein possesses extracellular anti-biofilm activity by destabilising these HJ-like structures, resulting in release of biofilm-resident bacteria into a vulnerable state. Herein, we showed that HMGB1's anti-biofilm activity was completely contained within a contiguous 97 amino acid region that retained DNA-binding activity, called 'mB Box-97'.

Methods: We engineered a synthetic version of this 97-mer and introduced a single amino acid change which lacked any post-translational modifications, and tested its activity independently and in combination with a humanised monoclonal antibody that disrupts biofilms by the distinct mechanism of DNABII protein sequestration.

Findings: mB Box-97 disrupted and prevented biofilms, including those formed by the ESKAPEE pathogens, and importantly reduced measurable proinflammatory activity normally associated with HMGB1 in a murine lung infection model.

Interpretation: Herein, we discuss the value of targeting the ubiquitous eDNA-dependent matrix of biofilms via mB Box-97 used singly or in a dual host-augmenting/pathogen-targeted cocktail to resolve bacterial biofilm infections.

Funding: This work was supported by NIH/NIDCD R01DC011818 to L.O.B. and S.D.G. and NIH/NIAID R01AI155501 to S.D.G.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385066PMC
http://dx.doi.org/10.1016/j.ebiom.2024.105304DOI Listing

Publication Analysis

Top Keywords

high mobility
8
mobility group
8
group box
8
bacterial biofilm
8
hj-like structures
8
anti-biofilm activity
8
amino acid
8
activity
5
noninflammatory 97-amino
4
97-amino acid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!