Two cases of colorectal mucosa-associated lymphoid tissue lymphoma (cMALT) are presented and discussed with the reports from 1997 to the present. Helicobacter pylori ()-negative cases showed tumor resolution 2 months after eradication therapy. -positive cases were successfully eradicated and tumor resolution was confirmed 16 months later. Analysis of the data reported to date shows that cMALT resolution rates were 68.4% (13/19) in the -negative group and 33.3% (7/21) in the -positive group. eradication should be considered the primary treatment for cMALT regardless of infection, especially in untreated patients under follow-up.

Download full-text PDF

Source

Publication Analysis

Top Keywords

eradication therapy
8
colorectal mucosa-associated
8
mucosa-associated lymphoid
8
lymphoid tissue
8
tissue lymphoma
8
tumor resolution
8
therapy colorectal
4
lymphoma report
4
cases
4
report cases
4

Similar Publications

Immunotherapy is a cutting-edge approach that leverages sophisticated technology to target tumor-specific antibodies and modulate the immune system to eradicate cancer and enhance patients' quality of life. Bioinformatics and genetic science advancements have made it possible to diagnose and treat cancer patients using immunotherapy technology. However, current immunotherapies against cancer have limited clinical benefits due to cancer-associated antigens, which often fail to interact with immune cells and exhibit insufficient therapeutic targeting with unintended side effects.

View Article and Find Full Text PDF

Theranostic agents hold great promise for personalized medicine by combining diagnostic and therapeutic functions. Herein, two novel multifunctional theranostic glyconanoprobes targeting breast cancer were engineered for synergistic dual chemo-gene therapy and triple chemo-gene-photothermal therapy. Upconversion nanoparticles (UCNPs) were prepared and coated with a Dox-loaded glycopeptide polymer (P-Dox) to form UCNP@P-Dox for improving stability.

View Article and Find Full Text PDF

Background: Health system and environmental factors play a significant role in achieving the World Health Organization (WHO) End Tuberculosis (TB) targets. However, quantitative measures are scarce or non-existent at a global level. We aimed to measure the progress made towards meeting the global End TB milestones from 2015 to 2020 and identify health system and environmental factors contributing to the success.

View Article and Find Full Text PDF

Self-Cascade of ROS/Glucose-Scavenging Immunomodulatory Hydrogels for Programmed Therapeutics of Infected Diabetic Ulcers via Nrf2/NF-κB Pathway.

Small

January 2025

Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.

Diabetic ulcers (DUs) are characterized by a microenvironment with high oxidative stress, high blood glucose levels, and recalcitrant bacterial infections. This microenvironment is accompanied by long-term suppression of endogenous antioxidant systems, which makes their clinical management extremely challenging. To address this issue, a hybridized novel gold-palladium (AuPd) nanoshell of the injectable/injectable hydrogel system UiO/AuPd/BNN6/PEG@Gel (UAPsBP@Gel) is developed.

View Article and Find Full Text PDF

Three-Level Nanoparticle Rocket Strategy for Colorectal Cancer Therapeutics in Photothermal Therapy, Inflammation Modulation, and Cuproptosis Induction.

Adv Healthc Mater

January 2025

Department of Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.

Disturbances in intracellular copper (Cu) homeostasis can trigger cuproptosis, a new form of cell death, which, when combined with photothermal therapy (PTT), offers a promising solution to the persistent challenges in colorectal cancer (CRC) treatment. In this study, a "three-level nanoparticle rocket" strategy is developed by engineering CuO, a multifunctional Cu-based nanoenzyme that is photothermal and has electron transfer properties and antioxidant efficiency. CuO effectively remodels the inflammatory environment by scavenging reactive oxygen species, thereby overcoming the traditional limitations of PTT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!