Background: Deep vein thrombosis (DVT) of lower extremity is a common complications after total knee arthroplasty (TKA). The purpose of this study was to evaluate the risk factors for DVT after TKA and analyze the expression of miR-199b-5p and nitric oxide (NO) before and after TKA, as well as their predictive value for DVT.

Methods: Basic clinical information of 121 patients with TKA was analyzed retrospectively. RT-qPCR was used to detect the relative expression level of miR-199b-5p in patients before and after TKA treatment. Based on the occurrence of DVT, patients were divided into DVT and non-DVT groups. Logistic regression analysis evaluated the risk factors of DVT. The receiver operating characteristic (ROC) curve assessed the predictive value of postoperative miR-199b-5p level, preoperative NO level, and their combination in DVT. The target genes of miR-199b-5p and their functions were predicted and annotated using bioinformatics analysis.

Results: The level of miR-199b-5p after TKA was upregulated compared with that before TKA (P < 0.001). DVT occurred in 20 of 121 patients after TKA, with an incidence of 16.53%. Multivariate analysis showed that age, family history of DVT, decrease of NO and increase of miR-199b-5p were risk factors for DVT after TKA (P < 0.05). The ROC curve showed that both miR-199b-5p and NO had certain diagnostic value for DVT, but the combination of miR-199b-5p and NO had the highest diagnostic accuracy (P < 0.001).

Conclusion: This study showed that the expression of miR-199b-5p was up-regulated after TKA, and miR-199b-5p levels were higher in DVT patients than in non-DVT patients. miR-199b-5p combined with NO is of great value in the diagnosis of DVT after TKA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344363PMC
http://dx.doi.org/10.1186/s13018-024-04997-1DOI Listing

Publication Analysis

Top Keywords

nitric oxide
8
total knee
8
knee arthroplasty
8
risk factors
8
factors dvt
8
patients tka
8
level mir-199b-5p
8
tka
7
dvt
6
mir-199b-5p
5

Similar Publications

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

This study successfully synthesised and characterised composites combining chitosan (CH), carboxymethyl cellulose (CMC), and various flavonoids (Fla). This innovative approach demonstrates the potential for developing functional materials with antioxidant and food preservation properties. The composites CH-Fla-CMC (1-5) was characterised using advanced techniques such as FT-IR, UV-Vis, XRD, SEM, TEM, and TGA, providing robust data on their structural, morphological, and thermal properties.

View Article and Find Full Text PDF

Lung tissue from human patients and murine models of sickle cell disease pulmonary hypertension (SCD-PH) show perivascular regions with excessive iron accumulation. The iron accumulation arises from chronic hemolysis and extravasation of hemoglobin (Hb) into the lung adventitial spaces, where it is linked to nitric oxide depletion, oxidative stress, inflammation, and tissue hypoxia, which collectively drive SCD-PH. Here, we tested the hypothesis that intrapulmonary delivery of hemopexin (Hpx) to the deep lung is effective at scavenging heme-iron and attenuating the progression of SCD-PH.

View Article and Find Full Text PDF

Tumor-targeted near-infrared/ultraviolet-triggered photothermal/gas therapy nanoplatform for effective cancer synergistic therapy.

Colloids Surf B Biointerfaces

January 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

The integration of photothermal therapy (PTT) and gas therapy (GT) on a nanoplatform shows great potential in cancer treatment. In this paper, a tumor-targeted near-infrared/ultraviolet (NIR/UV) triggered PTT/GT synergistic therapeutic nanoplatform, PB-CD-PLL(NF)-FA, was designed based on Prussian blue (PB) nanoparticles, 5-chloro-2-nitrobenzotrifluoro (NF)-grafted polylysine (PLL(NF)), and folic acid (FA). PB serves as a core to load PLL(NF) through host-guest interaction and can further modify FA.

View Article and Find Full Text PDF

A novel genetically encoded indicator for deciphering cytosolic and mitochondrial nitric oxide in live cells.

Biochem Biophys Res Commun

January 2025

Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China. Electronic address:

Nitric oxide (NO) has been highlighted as a key gaseous signaling molecule in the body, playing a central role in various physiological and pathological processes. However, a comprehensive analysis of NO metabolism dynamics in living cells remains a significant challenge. To address this, we have developed and characterized a novel genetically encoded NO fluorescence sensor, GefiNO, to investigate NO metabolism dynamics in living cells and subcellular organelles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!