The malonyl/acetyl-transferase from murine fatty acid synthase is a promiscuous engineering tool for editing polyketide scaffolds.

Commun Chem

Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.

Published: August 2024

Modular polyketide synthases (PKSs) play a vital role in the biosynthesis of complex natural products with pharmaceutically relevant properties. Their modular architecture makes them an attractive target for engineering to produce platform chemicals and drugs. In this study, we demonstrate that the promiscuous malonyl/acetyl-transferase domain (MAT) from murine fatty acid synthase serves as a highly versatile tool for the production of polyketide analogs. We evaluate the relevance of the MAT domain using three modular PKSs; the short trimodular venemycin synthase (VEMS), as well as modules of the PKSs deoxyerythronolide B synthase (DEBS) and pikromycin synthase (PIKS) responsible for the production of the antibiotic precursors erythromycin and pikromycin. To assess the performance of the MAT-swapped PKSs, we analyze the protein quality and run engineered polyketide syntheses in vitro. Our experiments include the chemoenzymatic synthesis of fluorinated macrolactones. Our study showcases MAT-based reprogramming of polyketide biosynthesis as a facile option for the regioselective editing of substituents decorating the polyketide scaffold.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344766PMC
http://dx.doi.org/10.1038/s42004-024-01269-1DOI Listing

Publication Analysis

Top Keywords

murine fatty
8
fatty acid
8
acid synthase
8
polyketide
6
synthase
5
malonyl/acetyl-transferase murine
4
synthase promiscuous
4
promiscuous engineering
4
engineering tool
4
tool editing
4

Similar Publications

Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1.

Chin Med

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.

Methods: HFD-induced obese mice were treated with WMW.

View Article and Find Full Text PDF

Toxoplasmosis induced by Toxoplasma gondii is a well-known health threat, that prompts fatal encephalitis increased with immunocompromised patients, in addition, it can cause chorioretinitis, microcephaly, stillbirth in the fetus and even led to death. Standard therapy uses sulfadiazine and pyrimethamine drugs revealed beneficial results during the acute stage, however, it has severe side effects. UPLC-ESI-MS/MS used to explore C.

View Article and Find Full Text PDF

We have previously reported that high-alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) in the gut can cause endo-alcoholic fatty liver disease. Here, we discover that 91.2% of Kpn isolates from pulmonary disease samples also produce excess ethanol, which may be associated with respiratory disease severity.

View Article and Find Full Text PDF

Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known.

View Article and Find Full Text PDF

Transcriptional regulation of adipocyte lipolysis by IRF2BP2.

Sci Adv

January 2025

Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Adipocyte lipolysis controls systemic energy levels and metabolic homeostasis. Lipolysis is regulated by posttranslational modifications of key lipolytic enzymes. However, less is known about the transcriptional mechanisms that regulate lipolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!