AI Article Synopsis

  • The larvae of Neuroptera, a group of insects, are predators that use specialized mouthparts to inject venom and suck fluids from their prey.
  • A new fossil larva found in Late Cretaceous Kachin amber, named Electroxipheus veneficus, was examined using advanced 3D imaging techniques to uncover its unique anatomical features.
  • Phylogenetic studies revealed that this larva is part of the Mantispoidea stem group, indicating that the basic structure of its venom-delivery system has remained consistent from the Cretaceous period to today, highlighting its active predatory nature compared to its less mobile relatives.

Article Abstract

The larvae of Neuroptera are predators that feed by injecting bioactive compounds into their prey and then suctioning the fluids through modified mouthparts. We explore the evolutionary history of this feeding structure through the examination of a new fossil larva preserved in Late Cretaceous Kachin amber, which we describe as new genus and species, Electroxipheus veneficus gen et sp. nov. X-ray phase-contrast microtomography enabled us to study the anatomy of the larva in 3D, including the structure of the mouthparts and that of the venom delivery system. The specimen exhibited a unique combination of morphological traits not found in any known fossil or extant lacewing, including an unusual structure of the antenna. Phylogenetic analyses, incorporating a selection of living and fossil larval Neuroptera and enforcing maximum parsimony and Bayesian inference, identified the larva as belonging to the stem group Mantispoidea. The larva shows that the anatomy of the feeding and venom-delivery apparatus has remained unchanged in Neuroptera from the Cretaceous to the present. The morphology of the specimen suggests that it was an active predator, in contrast with the scarcely mobile, specialized relatives, like mantispids and berothids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344812PMC
http://dx.doi.org/10.1038/s41598-024-69887-2DOI Listing

Publication Analysis

Top Keywords

venom delivery
8
delivery system
8
mesozoic larva
4
larva amber
4
amber reveals
4
reveals venom
4
system palaeobiology
4
palaeobiology ancient
4
ancient lineage
4
lineage venomous
4

Similar Publications

The multiple-tentacle box jellyfish, (Sucharitakul, 2017) and (Horst, 1907), are venomous species found in Thai waters. They are responsible for numerous envenomations through their stinging organelles, nematocysts. These specialized microscopic structures discharge venom, yet detailed knowledge of their types and morphology in these species remains limited.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA), a condition characterized by joint deterioration through the action of matrix metalloproteinases (MMPs), is prevalent worldwide. Bee venom (BV) has traditionally been used in Chinese medicine for pain, arthritis, rheumatism, skin diseases, etc. BV is enriched with active substances, notably melittin and phospholipase A2 (PLA2), offering significant therapeutic potential.

View Article and Find Full Text PDF

Encapsulation of anti-VEGF nanobody into niosome nanoparticles: a novel approach to enhance circulation half life and efficacy.

J Microencapsul

December 2024

Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.

This study aimed to encapsulate an anti-VEGF nanobody (Nb) within niosome nanoparticles (NNPs) to enhance its circulation half life. Key parameters such as encapsulation efficiency, stability, Nb release, cytotoxicity, and cell migration inhibition in HUVEC cells were evaluated, along with pharmacokinetic studies in mice. Nb-loaded NNPs (Nb-NNPs) were successfully prepared with an encapsulation efficiency of 78.

View Article and Find Full Text PDF

Thyroid cancer continues to be a notable health issue, requiring the creation of novel treatment methods to enhance patient results. The objective of this study is to investigate the potential of utilizing bee venom (BV)-loaded zeolitic imidazolate framework-8 (ZIF-8) nanoparticles as a novel strategy for specifically targeting and treating medullary thyroid cancer cells. Due to their wide surface area and configurable pore size, ZIF-8 nanoparticles are ideal for drug delivery.

View Article and Find Full Text PDF

Activation of mouse skin mast cells and cutaneous afferent C-fiber subtypes by bee venom.

Neurosci Lett

January 2025

Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Cir, Baltimore, MD 21224, USA. Electronic address:

In mammals, many Hymenopteran stings are characterized by pain, redness, and swelling - three manifestations consistent with nociceptive nerve fiber activation. The effect of a Western honeybee (Apis mellifera) venom on the activation of sensory C-fibers in mouse skin was studied using an innervated isolated mouse skin preparation that allows for intra-arterial delivery of chemicals to the nerve terminals in the skin. Our data show that honeybee venom stimulated mouse cutaneous nociceptive-like C-fibers, with an intensity (action potential discharge frequency) similar to that seen with a maximally-effective concentration of capsaicin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!