With the increasing demand for water in hydroponic systems and agricultural irrigation, viral diseases have seriously affected the yield and quality of crops. By removing plant viruses in water environments, virus transmission can be prevented and agricultural production and ecosystems can be protected. But so far, there have been few reports on the removal of plant viruses in water environments. Herein, in this study, easily recyclable biomass-based carbon nanotubes catalysts were synthesized with varying metal activities to activate peroxymonosulfate (PMS). Among them, the magnetic 0.125Fe@NCNTs-1/PMS system showed the best overall removal performance against pepper mild mottle virus, with a 5.9 log removal within 1 min. Notably, the key reactive species in the 0.125Fe@NCNTs-1/PMS system is O, which can maintain good removal effect in real water matrices (river water and tap water). Through RNA fragment analyses and label free analysis, it was found that this system could effectively cleave virus particles, destroy viral proteins and expose their genome. The capsid protein of pepper mild mottle virus was effectively decomposed where serine may be the main attacking sites by O. Long viral RNA fragments (3349 and 1642 nt) were cut into smaller fragments (∼160 nt) and caused their degradation. In summary, this study contributes to controlling the spread of plant viruses in real water environment, which will potentially help protect agricultural production and food safety, and improve the health and sustainability of ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2024.02.010 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China. Electronic address:
Changes in critical sites of virus-encoded protein or cis-acting element generally determine pathogenicity differentiation among different isolates of the same plant virus. Cucumber mosaic virus (CMV) isolates, which exhibit the most extensively known host range, demonstrate notable pathogenicity differentiation. This study focuses on the severe isolate CMV and mild isolate CMV, both affecting several species within the Solanaceae family, to identify the key factors regulating pathogenicity differentiation.
View Article and Find Full Text PDFPLoS Pathog
January 2025
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
Virus-derived small interfering RNAs (vsiRNAs) have been widely recognized to play an antiviral immunity role. However, it is unclear whether vsiRNAs can also play a positive role in viral infection. Here, we characterized three highly abundant vsiRNAs mapped to the genomic termini of rice stripe virus (RSV), a negative-strand RNA virus transmitted by insect vectors.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a major pest of global citriculture. In the Americas and in Asia, D. citri vectors the phloem-limited bacterium, Candidatus Liberibacter asiaticus (CLas), which causes the fatal citrus disease huanglongbing, or citrus greening.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
Paris yunnanensis, also named as Rhizoma Paridis in the Chinese Pharmacopeia, is a perennial Chinese medicinal herb commonly grown in Southwest China. However, several viruses have been found infecting this plant in recent years. Using high-throughput sequencing (HTS) and Sanger sequencing, this study obtained the complete genome sequences of three capillovirus isolates and one potyvirus isolate.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
Potyvirids are the largest group of plant RNA viruses. Pelota, a core component of RNA quality controls (RQC), promotes the degradation of potyvirids' genomic RNA by recognizing a specific GA motif. Here we demonstrate that the viral RNA-dependent RNA polymerase, NIb, acts as a SUMOylation decoy to effectively reduce Pelota SUMOylation by competing with SCE1 to inhibit Pelota-mediated RQC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!