Proteins control individual patient's response to pharmaceutical medication, be they receptors, transporters or enzymes. These proteins are under the control of genes. The study of these genes and the interplay between multiple genes is pharmacogenomics, with individual genes being termed pharmacogenes. The greatest understanding of pharmacogenetics is of the drug metabolising enzymes, the cytochrome P450s. Almost the entire UK population is likely to have at least one genetic variant that controls these P450s and thus the phenotype for metabolic competence. This means two patients receiving the same medication and dose may have very different responses, from adverse reaction to being ineffective. An individual military person's response to medications can be predicted from their pharmacogenetics, as an example; the response to the commonly prescribed 'pain killers', codeine, tramadol, hydrocodone or oxycodone. These opioids are metabolised into their active forms by the cytochrome 2D6. Four phenotypes classify an individual's metabolic competency: ultra-rapid, extensive, intermediate or poor. A poor metaboliser is at risk of ineffective pain relief from one of the opioids listed, whereas an ultra-rapid metaboliser is at risk of overexposure and subsequent dependency or abuse. In white European populations, the prevalence of the phenotypes is well known and may be used to guide prescribing; however, in other populations such as Nepalese or Pacific Islander the distribution of these phenotypes is unknown. Genotyping provides a framework for the precise treatment of patients and cost-effective use of medication for the UK Armed Forces, as well as potentially providing equity for minority groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/military-2024-002721 | DOI Listing |
BMC Complement Med Ther
December 2024
Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
Background: A precise observation is that the cervix's solid tumors possess hypoxic regions where the oxygen concentration drops below 1.5%. Hypoxia negatively impacts the host's immune system and significantly diminishes the effectiveness of several treatments, including radiotherapy and chemotherapy.
View Article and Find Full Text PDFBMC Microbiol
December 2024
College of Agriculture and Forestry, Linyi University, Linyi, 276005, Shandong, China.
Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.
View Article and Find Full Text PDFMol Med
December 2024
Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.
Background: Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.
View Article and Find Full Text PDFBMC Infect Dis
December 2024
Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco.
To assess the impact of the SARS-CoV-2 booster dose on the immune response against COVID-19, we conducted a cross-sectional study in the Casablanca-Settat region of Morocco. The study included 2,802 participants from 16 provinces, all of whom had received three doses of a SARS-CoV-2 vaccine. IgG antibodies targeting the S1 RBD subunit of the SARS-CoV-2 spike protein were quantified using the SARS-CoV-2 IgG II Quant assay and measured on the Abbott Architect i2000SR instrument.
View Article and Find Full Text PDFBMC Infect Dis
December 2024
KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, Kenya.
Increased immune evasion by emerging and highly mutated SARS-CoV-2 variants is a key challenge to the control of COVID-19. The majority of these mutations mainly target the spike protein, allowing the new variants to escape the immunity previously raised by vaccination and/or infection by earlier variants of SARS-CoV-2. In this study, we investigated the neutralizing capacity of antibodies against emerging variants of interest circulating between May 2023 and October 2024 using sera from representative samples of the Kenyan population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!