Integrating enhanced biological phosphorus removal in adsorption-stage to treat real domestic sewage.

Bioresour Technol

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China. Electronic address:

Published: November 2024

Wastewater treatment innovation toward resource recovery facilities raises concerns about the adsorption and bio-degradation (A-B) process. This study integrated enhanced biological phosphorus removal (EBPR) into the A-stage for real domestic sewage treatment using the short sludge retention time (S-SRT) approach. The S-SRT approach resulted in outstanding phosphorus (over 90 %) and COD removal (approximately 88 %), increased sludge yield and organic matter content, and a 1.68-fold increase in energy recovery efficiency by sludge anaerobic digestion. The inhibition of nitrification relieved competition for carbon sources between denitrification and phosphorus removal, allowing for the enrichment of phosphorus-accumulating organisms (PAOs) such as Tetrasphaera and Halomonas, leading to enhanced phosphorus removal activities. Biological adsorption also plays a significant role in achieving steady phosphorus removal performance. This study demonstrates the potential of the S-SRT approach as an effective strategy for simultaneous carbon and phosphorus capture in the A-stage, contributing to energy and nutrient recovery from sewage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131334DOI Listing

Publication Analysis

Top Keywords

phosphorus removal
20
s-srt approach
12
enhanced biological
8
biological phosphorus
8
real domestic
8
domestic sewage
8
phosphorus
7
removal
6
integrating enhanced
4
removal adsorption-stage
4

Similar Publications

Purification mechanism of emergent aquatic plants on polluted water: A review.

J Environ Manage

January 2025

Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China. Electronic address:

Nitrogen and phosphorus inputs to surface water bodies lead to a decline in water quality and a disruption in the balance of aquatic ecosystems. Emergent aquatic plants were widely used for their high efficiency in removing nitrogen and phosphorus from surface waters. However, there was a lack of systematic analyses on the purification of surface waters by emergent aquatic plants, and the mechanism of differences in nitrogen and phosphorus removal by different plants needs to be further revealed.

View Article and Find Full Text PDF

The selection of suitable raw materials as adsorbents is a key factor in effectively removing phosphorus from water. As an industrial by-product, soda residue exhibits high porosity and surface area, which can effectively adsorb pollutants. Magnetic lanthanum-iron soda residue (La-Fe-CSR) was synthesized using the co-precipitation method, and its characterization and mechanism for removing phosphate were thoroughly investigated.

View Article and Find Full Text PDF

Increasing toxic metal pollution in the aquatic ecosystem since the industrial revolution produces serious environmental challenges and has raised critical questions of ecological and human health implications. As a typical aquatic plant, Nasturtium officinale (N. officinale) has drawn significant attention due to its remarkable accumulation of heavy metals and other harmful substances from polluted water.

View Article and Find Full Text PDF

Bioremediation is widely recognized as a promising and efficient approach for the elimination of Cd from contaminated paddy soils. However, the Cd removal efficacy achieved through this method remains unsatisfactory and is accompanied by a marginally higher cost. Cysteine has the potential to improve the bioleaching efficiency of Cd from soils and decrease the use cost since it is green, acidic and has a high Cd affinity.

View Article and Find Full Text PDF

Mechanically Triggered Protein Desulfurization.

J Am Chem Soc

January 2025

New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.

The technology of native chemical ligation and postligation desulfurization has greatly expanded the scope of modern chemical protein synthesis. Here, we report that ultrasonic energy can trigger robust and clean protein desulfurization, and we developed an ultrasound-induced desulfurization (USID) strategy that is simple to use and generally applicable to peptides and proteins. The USID strategy involves a simple ultrasonic cleaning bath and an easy-to-use and easy-to-remove sonosensitizer, titanium dioxide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!