Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rare earth element (REE) mobility in the environment is expected to be controlled by colloids. Recent research has detailed the structure of iron-organic colloids (Fe-OM colloids), which include both large colloids and smaller nano-colloids. To assess how these nano-colloids affect REE mobility, their interactions with REE and calcium (Ca) were investigated at pH 4 and 6. Using Asymmetric Flow Field Flow Fractionation (A4F) combined with UV and Triple Quadrupole Inductively Coupled Plasma Mass Spectrometry (QQQ-ICP-MS), Fe-OM nano-colloids were separated from bulk Fe-OM colloids and their REE and Ca content were analyzed. Without REE and Ca, nano-colloids had an average diameter of approximately 25 nm. Their structure is pH-dependent, with aggregation increasing as pH decreases. At high REE loadings (REE/Fe ≥ 0.05), REE induced a size increase of nano-colloids, regardless of pH. Heavy REE (HREE), with their high affinity for organic matter, formed strong complexes with Fe-OM colloids, resulting in large aggregates. In contrast, light REE (LREE), which bind less strongly to organic molecules, were associated with the smallest nano-colloids. Low REE loading did not cause noticeable fractionation. Calcium further enhanced the aggregation process at both pH levels by neutralizing the charges on nano-colloids. These findings indicate that REE can act as aggregating agent controlling their own mobility, and regulating colloid transfer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143164 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!