Cell surface receptors play a key role in intracellular signaling, and their overexpression and activation are among the drivers of multiple diseases. Selective inhibition of cell surface receptors is important for regulating intracellular signaling pathways and cell behavior. Here, we design engineered aptamers to selectively inhibit receptor function. In this strategy, the aptamer specifically recognizing the extracellular structural domain of the EGFR, was conjugated to an adamantane moiety through linking arms of various lengths in order to obtain better performances toward EGFR. These interactions inhibit EGFR dimerization, thereby impeding the activation of downstream signaling pathways. It is shown that the adamantane-modified aptamers exhibit superior inhibition of downstream effector proteins relative to the unmodified aptamers. The optimal inhibitory effect was observed with a linker arm of 40 T-base in length. Notably, the best-performing adamantane-modified aptamer specifically binds to A549 cells with a dissociation constant (22.6 ± 4.5 nM) that is approximately 4-fold lower than that of the parent EGFR aptamer (94.4 ± 21.9 nM). We further combine the use of the adamantane-modified aptamer with that of genistein, a natural isoflavone compound with EGFR tyrosine kinase inhibition activity, to enhance the inhibitory effect on EGFR and its downstream signaling employing a synergistic action. This study is expected to provide a versatile approach for the improvement of existing aptamers obtaining increased selective inhibition of cell surface receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.134989DOI Listing

Publication Analysis

Top Keywords

cell surface
16
surface receptors
16
selective inhibition
12
inhibition cell
12
intracellular signaling
8
signaling pathways
8
downstream signaling
8
adamantane-modified aptamer
8
egfr
6
inhibition
5

Similar Publications

Purpose: Receptor CUB-domain containing- protein 1 (CDCP1) was evaluated as a target for detection and treatment of breast cancer.

Experimental Design: CDCP1 expression was assessed immunohistochemically in tumors from 423 patients (119 triple-negative breast cancer (TNBC); 75 HER2+; 229 ER+/HER2- including 228 primary tumors, 229 lymph node and 47 distant metastases). Cell cytotoxicity induced in vitro by a CDCP1-targeting antibody-drug conjugate (ADC), consisting of the human/mouse chimeric antibody ch10D7 and the microtubule disruptor monomethyl auristatin E (MMAE), was quantified, including in combination with HER2-targeting ADC T-DM1.

View Article and Find Full Text PDF

Distinct Ocular Surface Microbiome in Keratoconus Patients Correlate With Local Immune Dysregulation.

Invest Ophthalmol Vis Sci

January 2025

GROW Research Laboratory, Narayana Netralaya Foundation, Bangalore, India.

Purpose: Keratoconus (KC) is characterized by irregular astigmatism along with corneal stromal weakness and is associated with altered immune status. Tissue resident microbiomes are known to influence the immune status in other organs, but such a nexus has not been described in ocular conditions. Therefore, we examined the ocular surface microbiome of patients with KC and correlated it to the immune cell and tear molecular factor profiles.

View Article and Find Full Text PDF

The imperative for developing robust tools to detect, analyze, and characterize viruses has become increasingly evident as they continue to threaten human health. In this review, we focus on recent advancements in studying human viruses with flow virometry (FV), an emerging technique that has gained considerable momentum over the past 5 years. These advancements include the application of FV in viral surface phenotyping, viral protein functionality, virus sorting, vaccine development, and diagnostics.

View Article and Find Full Text PDF

Unlabelled: Current influenza vaccination approaches protect against specific viral strains, but do not consistently induce broad and long-lasting protection to the diversity of circulating influenza viruses. Single-cycle viruses delivered to the respiratory tract may offer a promising solution as they safely express a diverse array of viral antigens by undergoing just one round of cell infection in their host and stimulate broadly protective resident memory T-cell responses in the lung. We have previously developed a vaccine candidate called S-FLU, which is limited to a single cycle of infection by inactivation of the hemagglutinin signal sequence and induces a broadly cross-reactive T-cell response and antibodies to neuraminidase, but fails to induce neutralizing antibodies to hemagglutinin after intranasal administration.

View Article and Find Full Text PDF

CD20 and CD19 promote proliferation driven by the IgM-TLR9-L265P MyD88 complex.

Int Immunol

January 2025

Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo; Minato-ku, Tokyo 108-8639, Japan.

The cancer driver mutation L265P MyD88 is found in approximately 30 % of cases in the activated B cell-like subgroup of diffuse large B cell-like lymphoma (ABC DLBCL). L265P MyD88 forms a complex with TLR9 and IgM, referred to as the My-T-BCR complex, to drive proliferation. We here show that the B cell surface molecules CD19 and CD20 enhance proliferation mediated by the My-T-BCR complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!