XueBiJing injection improves the symptoms of sepsis-induced acute lung injury by mitigating oxidative stress and ferroptosis.

J Ethnopharmacol

Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Henan Province, 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Henan Province, 450052, China. Electronic address:

Published: January 2025

Ethnopharmacological Relevance: XBJ injection is approved by the China Food and Drug Administration for the adjunctive treatment of sepsis, and it is derived from the traditional Chinese medicine (TCM) prescription XuefuZhuyu Decoction. It consists of five Chinese herbal extracts: Carthamus tinctorius, Paeonia lactiflora, Salvia miltiorrhiza, Conioselinum anthriscoides 'Chuanxiong' and Angelica sinensis.

Aim Of The Study: The purpose of this study was to explore the relationship between ferroptosis and acute septic lung injury, and to evaluate the improvement effect of XBJ injection on acute lung injury in sepsis.

Materials And Methods: Acute lung injury was induced in rats by cecum ligation and puncture, and these rats were treated with XBJ injection. Oxidative stress and inflammation levels were assessed in serum and lung tissue, and tissue samples were collected for histological and protein analyses. To illustrate the mechanism of the improvement effect of XBJ on acute lung injury in sepsis, serum lipidomics was carried out to investigate whether XBJ prevents oxidative stress-induced lipid metabolism disorders. Furthermore, protein expression of ferroptosis-related genes was also examined.

Results: XBJ was shown to be effective in alleviating sepsis-induced ALI. XBJ also improves sepsis-induced acute lung injury by reducing lipid peroxidation and inflammation and modulating ferroptosis pathways. Specifically, compared with the sham group, XBJ downregulated the levels of Fe, MDA and GSSG, and reversed the decrease in the levels of GSH and GSH/GSSH in lung tissue. Metabolic pathways such as glycerophospholipid metabolism, phospholipid metabolism, and lipid metabolism associated with ferroptosis were obtained by lipidomic analysis of differential lipid metabolite enrichment, suggesting that ferroptosis occurs in septic rats, and that XBJ inhibits ferroptosis and thereby improves sepsis-induced ALI. Furthermore, XBJ optimises iron metabolism and lipid oxide metabolism by regulating the expression of a series of proteins that are closely related to ferroptosis, such as GPX4, ACSL4, x-CT, and FTH1.

Conclusions: Our findings, initially, indicated that XBJ ameliorates sepsis-induced ALI by reducing oxidative stress and ferroptosis, revealing a previously unrecognised mechanism by which XBJ ameliorates sepsis-induced ALI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2024.118732DOI Listing

Publication Analysis

Top Keywords

lung injury
24
acute lung
20
sepsis-induced ali
16
oxidative stress
12
xbj
12
xbj injection
12
sepsis-induced acute
8
lung
8
ferroptosis
8
stress ferroptosis
8

Similar Publications

Angiotensin-Converting Enzyme 2 Enhances Autophagy via the Consumption of miR-326 in a Mouse Model of Acute Lung Injury.

Biochem Genet

January 2025

Department of Pulmonary Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.

Angiotensin-converting enzyme 2 (ACE2) has been reported to exert a protective effect in acute lung injury (ALI), though its underlying mechanism remains incompletely understood. In this study, ACE2 expression was found to be upregulated in a mouse model of ALI induced by lipopolysaccharide (LPS) injection. ACE2 knockdown modulated the severity of ALI, the extent of autophagy, and the mTOR pathway in this model.

View Article and Find Full Text PDF

Ameliorative impact of sacubitril/valsartan on paraquat-induced acute lung injury: role of Nrf2 and TLR4/NF-κB signaling pathway.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

Herbicides such as paraquat (PQ) are frequently utilized particularly in developing nations. The present research concentrated on the pulmonary lesions triggered by PQ and the beneficial effect of the angiotensin receptor neprilysin inhibitor (ARNI), sacubitril/valsartan, against such pulmonary damage. Five groups of rats were established: control, ARNI, PQ (10 mg/kg), ARNI 68 + PQ, and ARNI 34 + PQ.

View Article and Find Full Text PDF

Introduction: Veno-arterial extracorporeal membrane oxygenation is frequently considered and implemented to help manage patients with cardiogenic shock from acute poisoning. However, utilization of veno-venous extracorporeal membrane oxygenation in acutely poisoned patients is largely unknown.

Method: We conducted a retrospective study analyzing the epidemiologic, clinical characteristics and survival of acutely poisoned patients placed on veno-venous extracorporeal membrane oxygenation using the Extracorporeal Life Support Organization registry.

View Article and Find Full Text PDF

Unlabelled: The gut microbiota influences systemic immunity and the function of distal tissues, including the brain, liver, skin, lung, and muscle. However, the role of the gut microbiota in the foreign body response (FBR) and fibrosis around medical implants is largely unexplored. To investigate this connection, we perturbed the homeostasis of the murine gut microbiota via enterotoxigenic (ETBF) infection and implanted the synthetic polymer polycaprolactone (PCL) into a distal muscle injury.

View Article and Find Full Text PDF

Background: is a differentially expressed gene (DEG) between M1 and M2 macrophages. This study explained why it causes opposite effects in different circumstances.

Methods: Gene expression profiles of various cell subsets were compared by mining a public database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!