Although mangrove forests can uptake atmospheric CO and store carbon as organic matter called "blue carbon", it is also an important natural source of greenhouse gas methane. Methanogens are major contributors to methane and play important roles in the global carbon cycle. However, our understanding of the key microbes and metabolic pathways responsible for methanogenesis under specific substrates in mangrove sediments is still very limited. Here, we set an anaerobic incubation to evaluate the responses of methanogens in mangrove sediments from South China to the addition of diverse methanogenic substrates (H/CO, acetate, trimethylamine (TMA), and methanethiol (MT)) and further investigated the dynamics of the whole microbial community. Our results showed that diverse substrates stimulated methanogenic activities at different times. The stimulation of methanogenesis was more pronounced at early and late periods by the addition of methylotrophic substrates TMA and MT, respectively. The amplicon sequencing analysis showed that genus Methanococcoides was mainly responsible for TMA-utilized methanogenesis in mangrove sediment, while the multitrophic Methanococcus was most abundant in H/CO and MT treatments. Apart from that, the bacteria enrichments of Syntrophotalea, Clostridium_sensu_stricto_12, Fusibacter in MT treatments might also be associated with the stimulation of methane production. In addition, the metagenomic analysis suggested that Methanosarcinaceae was also one of the key methanogens in MT treatments with different genomic information compared to that in TMA treatments. Finally, the total relative abundances of methanogenesis-related genes were also highest in TMA and MT treatments. These results will help advance our understanding of the contributions of different methanogenesis pathways and methanogens to methane emissions in mangrove sediments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.175677 | DOI Listing |
Mar Genomics
March 2025
Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, School of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, China; Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang 222005, China. Electronic address:
Mangroves, owing to their unique living environment, serve as an important source of natural bioactive compounds. Sarcopodium sp. QM3-1, a marine fungus isolated from mangrove sediments of Quanzhou Bay, exhibited antifungal activity against the plant pathogen Agrobacterium tumefaciens and Magnaporthe oryzae.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; School of Engineering and Built Environment, Griffith University, Brisbane, QLD, Australia; East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu Darul Iman, Malaysia. Electronic address:
The pervasive and escalating issue of toxic metal pollution has gathered global attention, necessitating the exploration of innovative ecological strategies like phytoremediation. This study explored the extent of potentially toxic metal contamination status and the effectiveness of three planted mangrove species (Avicennia marina, Bruguiera gymnorhiza,and Excoecaria agallocha) in phytoremediation efforts to reduce pollution level. The results indicated that the mean concentrations of elements in the sediment of the area followed a descending sequence: Fe (27,136.
View Article and Find Full Text PDFMar Drugs
December 2024
Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.
Mangrove ecosystems have attracted widespread attention because of their high salinity, muddy or sandy soil, and low pH, as well as being partly anoxic and periodically soaked by tides. Mangrove plants, soil, or sediment-derived fungi, especially the species, possess unique metabolic pathways to produce secondary metabolites with novel structures and potent biological activities. This paper reviews the structural diversity and biological activity of secondary metabolites isolated from mangrove ecosystem-derived species over the past 5 years (January 2020-October 2024), and 417 natural products (including 170 new compounds, among which 32 new compounds were separated under the guidance of molecular networking and the OSMAC approach) are described.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Ecology, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, Hainan, China. Electronic address:
The mangrove ecosystems store a significant amount of "blue carbon" to mitigate global climate change, but also serve as hotspots for greenhouse gases (GHGs: CO, CH and NO) production. The CH and NO emissions offset mangrove carbon benefits, however, the extent of this effect remains inadequately quantified. By applying the 36 h time-series observations and mapping cruises, here we investigated the spatial and temporal distribution of GHGs and their fluxes in Dongzhaigang (DZG) bay, the largest mangrove ecosystem in China, at tidal and monthly scales.
View Article and Find Full Text PDFBiogeochemistry
January 2025
Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar.
Unlabelled: Blue carbon represents the organic carbon retained in marine coastal ecosystems. (an Arabic for "mudflats"), formed in tidal environments under arid conditions, have been proposed to be capable of carbon sequestrating. Despite the growing understanding of the critical role of blue carbon ecosystems, there is a current dispute about whether sabkhas around the Persian Gulf can contribute to carbon retention as a blue carbon ecosystem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!