The gut microbiota prevents harmful microbes from entering the body, a function known as colonization resistance. The enteric pathogen Salmonella enterica serovar (S.) Typhimurium uses its virulence factors to break colonization resistance through unknown mechanisms. Using metabolite profiling and genetic analysis, we show that the initial rise in luminal pathogen abundance was powered by a combination of aerobic respiration and mixed acid fermentation of simple sugars, such as glucose, which resulted in their depletion from the metabolome. The initial rise in the abundance of the pathogen in the feces coincided with a reduction in the cecal concentrations of acetate and butyrate and an increase in epithelial oxygenation. Notably, these changes in the host environment preceded changes in the microbiota composition. We conclude that changes in the host environment can weaken colonization resistance even in the absence of overt compositional changes in the gut microbiota.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466686PMC
http://dx.doi.org/10.1016/j.chom.2024.07.025DOI Listing

Publication Analysis

Top Keywords

colonization resistance
16
break colonization
8
gut microbiota
8
initial rise
8
changes host
8
host environment
8
salmonella re-engineers
4
re-engineers intestinal
4
intestinal environment
4
environment break
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!