Unraveling the chemotherapeutic potential of taxifolin ruthenium-p-cymene complex in breast carcinoma: Insights into AhR signaling pathway in vitro and in vivo.

Transl Oncol

Department of Pharmacy, NSHM Knowledge Campus- Kolkata, 124 BL. Saha Road, Kolkata, West Bengal 700053, India. Electronic address:

Published: November 2024

Background: Mammary carcinoma is the most frequently diagnosed form of carcinoma in women worldwide. The organometallic compounds showed a prospective anticancer activity. This research explored the anticancer efficacy of taxifolin ruthenium-p-cymene counter to breast cancer.

Methods: The anticancer efficacy of the novel organometallic compound was investigated via various in vitro and in vivo techniques using breast cancer cell lines and breast cancer model of rat.

Results: Target proteins were identified via pharmacophore analysis, which revealed a high binding affinity towards AhR, EGFR, and β-catenin. The compound induced apoptotic events and prevented cancer cell colony formation. Furthermore, decreased expression of AhR, EGFR, and N-cadherin inhibited cancer cell growth, migration, and proliferation. The compound provoked the cell cycle arrest at sub G0/G1 phase, S phase and G2/M phase and inaugurated the caspase-3 dependent apoptotic events. The in-vivo experimentation displayed the fruitful restoration of breast tissue since the complex treatment in DMBA persuaded breast carcinoma in rat. Moreover, the upstream of p53 and caspase-3 expression along with substantially downstream of vimentin, β-catenin, m-TOR and Akt expression.

Conclusions: In conclusion, the compound repressed the cancerous cellular viability, migration, and EMT via modulating the AhR/EGFR/ PI3K transduction pathway and the expression of EMT biomarkers such as N-cadherin, E-cadherin, thus eventually revoked the EMT facilitated metastasis of malignant cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11388270PMC
http://dx.doi.org/10.1016/j.tranon.2024.102107DOI Listing

Publication Analysis

Top Keywords

cancer cell
12
taxifolin ruthenium-p-cymene
8
breast carcinoma
8
vitro vivo
8
anticancer efficacy
8
breast cancer
8
ahr egfr
8
apoptotic events
8
breast
6
unraveling chemotherapeutic
4

Similar Publications

Since decades after temozolomide was approved, no effective drugs have been developed. Undoubtedly, blood-brain barrier (BBB) penetration is a severe issue that should be overcome in glioblastoma multiforme (GBM) drug development. In this research, we were inspired by linezolid through structural modification with several bioactive moieties to achieve the desired brain delivery.

View Article and Find Full Text PDF

Amino-quinolines are potential candidates that may provide some insight into the current chemotherapeutic research due to their demonstrated anti-cancer activity. This led us to synthesize and explore a new amino-azo-quinoline ligand H2L 1 and its square planar nickel(II) complexes [Ni(HL)(OAc)], 2 and [Ni(HL)Cl], 3 and the structures were determined by SCXRD. Theoretical investigation of redox orbitals of the complexes discloses that the reduction process is due to ligand reduction whereas both metal and ligand are contributing towards oxidation.

View Article and Find Full Text PDF

Breast cancers of the IntClust-2 type, characterized by amplification of a small portion of chromosome 11, have a median survival of only five years. Several cancer-relevant genes occupy this portion of chromosome 11, and it is thought that overexpression of a combination of driver genes in this region is responsible for the poor outcome of women in this group. In this study we used a gene editing method to knock out, one by one, each of 198 genes that are located within the amplified region of chromosome 11 and determined how much each of these genes contributed to the survival of breast cancer cells.

View Article and Find Full Text PDF

Purpose: Orvacabtagene autoleucel (orva-cel; JCARH125), a CAR T-cell therapy targeting B-cell maturation antigen (BCMA), was evaluated in relapsed/refractory multiple myeloma (RRMM) patients in the EVOLVE phase 1/2 study (NCT03430011). We applied a modified piecewise model to characterize orva-cel transgene kinetics and assessed the impact of various covariates on its pharmacokinetics (PK).

Experimental Design: The population PK analysis included 159 patients from the EVOLVE study.

View Article and Find Full Text PDF

Purpose: Therapeutic efficacy of KRASG12C(OFF) inhibitors (KRASG12Ci) in KRASG12C-mutant non-small cell lung cancer (NSCLC) varies widely. The activation status of RAS signaling in tumors with KRASG12C mutation remains unclear, as its ability to cycle between the active GTP-bound and inactive GDP-bound states may influence downstream pathway activation and therapeutic responses. We hypothesized that the interaction between RAS and its downstream effector RAF in tumors may serve as indicators of RAS activity, rendering NSCLC tumors with a high degree of RAS engagement and downstream effects more responsive to KRASG12Ci compared to tumors with lower RAS---RAF interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!